Fuzzy Control of Structural Vibration. An Active Mass System Driven by a Fuzzy Controller

M. Battaini, F. Casciati and L. Faravelli
Dept. of Structural Mechanics, University of Pavia,
Via Ferrata 1, 27100 Pavia, Italy

Summary

The authors are engaged in a long-term research project studying the potential of fuzzy control strategies for active structural control in civil engineering applications. The advantage of this approach is its inherent robustness and its ability to handle the non linear behaviour of the structure. Moreover, the computations for driving the controller are quite simple and can easily be implemented into a fuzzy chip.

In this paper attention is focused on the response of a three-storey frame, subjected to earthquake excitation, controlled by an active mass driver located on the top floor. The design and the implementation of the controller driving the AMD system are discussed.

Key words: Active Mass Driver, Fuzzy Control, Fuzzy Logic, Structural Control

1 Introduction

In the design of an active controller, the goal is the reduction of the structural response in term of accelerations, velocities and displacements under the limitation of both the control force level (limited by the actuators feature and by the required amount of energy) and the number of measured signals. Fuzzy theory has been recently (Ayyub et al., 1990, Faravelli and Yao, 1996, Subramaniam et al., 1996, Casciati et al., 1996) proposed for the active structural control of civil engineering systems. As an alternative to classical
control theory, it allows the resolution of imprecise or uncertain informations (Casciati and Faravelli, 1995). Moreover fuzzy control can handle the hysteretic behaviour of structures under earthquake (Faravelli and Yao, 1995 and 1996).

The main advantages in adopting a fuzzy control schemes can be summarized as follows.

1. The uncertainties of input data from the ground motion and structural vibrations sensors are treated in a much easier way by fuzzy control theory than by classical control theory. Fuzzy logic, which is the basis of the fuzzy controller, intrinsically accounts for such uncertainties. The implementation of fuzzy controllers makes use of linguistic synthesis and therefore they are not affected by the selection of a specific mathematical model. As a consequence the resulting fuzzy controller possesses an inherent robustness.

2. The whole fuzzy controller can be easily implemented in a fuzzy chip, which guarantees immediate reaction times and autonomous power supply (Casciati and Giorgi, 1996).

3. The knowledge base identifies the actual variables driving the control process: in the specific benchmark problem developed throughout this paper only two variables must be measured and estimated to implement the controller.

4. The benchmark is assuming the linear model be consistent with the real structural system. For a more realistic implementation, at least geometric nonlinearities should be incorporated in the problem. The fuzzy controller does not require modifications to follow such a case.

2 Fuzzy Inference

Fuzzy control converts a linguistic control strategy into an automatic control strategy. The classic fuzzy inference scheme consists of the following steps (Faravelli and Yao, 1995, Faravelli and Yao, 1996, Casciati et al., 1996):
1. Fuzzification interface (the controller input variables, measured from the structure, are fuzzified into linguistic terms);

2. Knowledge base (consisting of fuzzy IF-THEN rules and membership functions);

3. Fuzzy reasoning (resulting in a fuzzy output for each rule);

4. Defuzzification interface (providing the crisp control signal);

In this paper, the preliminary design of the controller will couple the Larsen’s min product rule, to combine the membership values for each rule, with the center of gravity (COG) defuzzification scheme, to obtain the output crisp value.

The controller can also be optimized by an algorithm that uses the Takagi and Sugeno (Takagi and Sugeno, 1993) inference system. This computes the fuzzy output for each rule as a linear combination of input variable membership values plus a constant term. The final crisp output is achieved using a weighted average.

Within this paper the authors did not pay attention to the optimization of the controller.

This is mainly due to three reasons:

1. The authors wish first to pursue a laboratory validation of the controller; this, in particular, drove the authors selection between the benchmark options (Spencer et al., 1996). The authors decided to study the Active Mass Driver System example, which can easily be scaled for matching the available testing facilities, rather than the full-scale tendon system implemented at the National Center of Earthquake Engineering Research in Buffalo.

2. Optimization can easily be pursued by using a neuro-fuzzy scheme (Faraelli and Yao, 1996), but for this purpose a family of excitation time histories is required.

3. Adaptive fuzzy controllers are the final goal of the ongoing effort research toward the evaluation of fuzzy control potential (Wang, 1995).
3 The benchmark problem

Consider a structural system subjected to an earthquake ground acceleration. The equations of motion in the state vector form are:

\[ \dot{x} = Ax + Bu + Ew \]  \hspace{1cm} (1)
\[ y = Cx + Du + Fw \]  \hspace{1cm} (2)

In Eqs. (1) and (2) \( x \) is the state vector, \( y \) the vector of the measured quantities, \( u \) the control force and \( w \) the external excitation.

One starts from the knowledge of the matrices \( A, B, C, D, E \) and \( F \) of the control problem (Spencer et al., 1996). Their dimension are: \( 28 \times 28, 28 \times 1, 13 \times 28, 13 \times 1, 28 \times 1, 13 \times 1 \), respectively. This reduce vectors \( u \) and \( w \) to the scalars \( u \) and \( w \).

Moreover, the benchmark formulation distinguishes two blocks, in the matrices \( C, D \) and \( F \), of six rows the first subset and of seven rows the second subset. No use of the latter block is done in this paper.

The six components of the first block are \([x_m, \dot{x}_{a1}, \dot{x}_{a2}, \dot{x}_{a3}, \ddot{x}_{am}, \ddot{x}_g]\), namely, the Active Mass Driver displacement, the three storey absolute accelerations, the AMD absolute acceleration and the ground acceleration.

Analog-digital conversions, time delays and similar implementation aspects are all incorporated in the numerical tool of solution. Among them an estimation of the velocities \( \dot{x}_{ai} \) from the measured accelerations \( \ddot{x}_{ai} \) is available.

Different selections for \( w(t) \) are suggested: the classical El-Centro record, the signal recorded in Hachinohe as well as realizations of a stationary filtered Gaussian white-noise.

The following performance indexes are considered:

\[ J_1 = \max_{\omega, \phi} \left\{ \frac{\sigma_{d_1}}{\sigma_{x_{a30}}}, \frac{\sigma_{d_2}}{\sigma_{x_{a30}}}, \frac{\sigma_{d_3}}{\sigma_{x_{a30}}} \right\} \]

\[ J_2 = \max_{\omega, \phi} \left\{ \frac{\sigma_{\dot{x}_{a1}}}{\sigma_{\ddot{x}_{a30}}}, \frac{\sigma_{\dot{x}_{a2}}}{\sigma_{\ddot{x}_{a30}}}, \frac{\sigma_{\dot{x}_{a3}}}{\sigma_{\ddot{x}_{a30}}} \right\} \]

\[ J_3 = \max_{\omega, \phi} \left\{ \frac{\sigma_{x_m}}{\sigma_{\ddot{x}_{a30}}} \right\} \]

\[ J_4 = \max_{\omega, \phi} \left\{ \frac{\sigma_{\dot{x}_m}}{\sigma_{x_{a30}}} \right\} \]
where: $\sigma_{d_i}$ is the root mean square (rms) interstorey drift for the $i$th floor, $\sigma_{x_{ai}}$ is the rms of the $i$th floor acceleration, $\sigma_{x_m}$, $\sigma_{x_{am}}$ are the rms of the displacement, velocity and acceleration of the AMD mass. $\dot{x}_{ai}$ and $\ddot{x}_{ai}$ are the absolute velocity and acceleration of the $i$th floor, respectively.

The normalization values are: $\sigma_{x_{a0}} = 1.31$ cm, $\sigma_{x_{a30}} = 47.9$ cm/sec, $\sigma_{x_{am0}} = 1.79$ cm/sec$^2$.

$\omega_g$, $\zeta_g$ are the Kanai-Tajini parameters that in the worst case are $\omega_g = 37.3$, $\zeta_g = 0.3$.

### 4 Designing the fuzzy controller

The controller was initially designed using three membership functions for each input variable and five of them for the output signal (case A). In a second phase (case B) five membership functions were also introduced for the input variables. The input/output subsets are: NL = negative large values, NE = negative values, ZE = zero value, PO = positive values, PL = large positive values. Only NE, ZE and PO are used when three membership functions are adopted for the input variables (case A). The knowledge base requires a full understanding of the system dynamics. For this purpose a sensitivity analysis of the structure was conducted in order to emphasize the
basic features of its structural response.
The benchmark spirit suggested the authors to select, as primary target, that the fuzzy controller were able to reproduce the control \( u_R \) obtained by the use of the LQG controller of reference.

Using the signal \( u_R \), as target, a linear regression was used to find the dependence of the control force on the measured quantities and/or their consequent velocities.

The best results were achieved making use of the three storey velocities \( \dot{x}_{a1}, \dot{x}_{a2}, \dot{x}_{a3} \). Indeed, the weights of \( \dot{x}_{a1} \) is small in comparison with the weight of \( \dot{x}_{a2} \) and \( \dot{x}_{a3} \). The controller was therefore designed as driven by the second and third storey velocities. The ratio of the coefficients of the two velocities was approximately 8, that means that the main contribution to the control signal is due to the third storey velocity.

For case A (with three input membership functions) the normalization coefficients \( \alpha_2 = 6.24 \) and \( \alpha_3 = 0.78 \) were introduced for the second and third velocity respectively. For case B (with five input membership functions) the normalization coefficients are \( \alpha_2 = 2.678 \) and \( \alpha_3 = 0.334 \). The resulting normalized value is used to enter the membership function of Figure 1 for case B; in a similar plot with three membership functions for case A.

Using the expertise previously collected (Faravelli L. and Yao T., 1996), the input and output membership functions were modified to improve the controller design by a trial "wait and see" scheme. The adopted inference rules are summarized in Table 1 for case A and Table 2 for case B. Finally the

<table>
<thead>
<tr>
<th>( \hat{x}_2 )</th>
<th>NE</th>
<th>ZE</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \hat{x}_3 )</td>
<td>NE</td>
<td>ZE</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td>ZE</td>
<td>PO</td>
<td>ZE</td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>PL</td>
<td>PO</td>
</tr>
</tbody>
</table>

Table 1: Fuzzy rules for the first controller design. The matrix assigns a membership function to the control signal

control signal \( u \) is passed through a zero-order (case B) or first-order (case A) hold (\( \text{ZOH/FOH} \)) to stabilize the signal. This is due to the fact that the
assigned SIMULINK program uses an integration step $dt = 0.0001$ seconds while the control signal is computed every 0.001 seconds. Using the ZOH device, a constant behaviour between two calculated values is assumed, whereas a linear behavior is given with a FOH device. The authors decided to use the ZOH and FOH devices, even though it introduces a delay in the control signal, because, without such a device, the fuzzy signal presents spikes that generate an excessive acceleration of the AMD.

5 Numerical Results

The structural problem is the three floors building (defined in Spencer et al., 1996) controlled by an active mass driver (AMD) located on the top floor.
Table 2: Fuzzy rules for the second controller design. The matrix assigns a membership function to the control signal.

<table>
<thead>
<tr>
<th></th>
<th>fuzzy subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>output variables</td>
<td>control signal</td>
</tr>
<tr>
<td>fuzzy inference</td>
<td>Larsen’s Rule</td>
</tr>
<tr>
<td>defuzzification</td>
<td>COG</td>
</tr>
</tbody>
</table>

Table 3: Specification of the fuzzy logic adopted in the numerical example for the two fuzzy controller. COG means: center of gravity.

The governing relations are Eqs. (1) and (2). The fuzzy logic adopted is specified in Table 3.

The fuzzy controller is implemented into the SIMULINK (SIMULINK, 1994) code provided in the benchmark problem by two MATLAB (MATLAB, 1994) functions. In the first function the input/output membership functions and the fuzzy rules are stored. The second function contains the procedure for evaluating the control signal: the normalization factors of the input variables are first defined; the fuzzification of the input variables and their combination by the Larsen rule is conducted and finally the defuzzification of the control signal (with the calculation of its crisp value) is provided. This second MATLAB function is inserted into the SIMULINK code replacing the LQG controller sample provided in the original program. The controller ac-
Table 4: Evaluation criteria for a simulated earthquake using the nominal \( \omega_g = 37.3 \) rads/sec, \( \zeta_g = 0.3 \), and \( T_f = 300 \) secs (no maximization over \( \omega_g, \zeta_g \) was done). Comparison between the two designed fuzzy controllers and the sample LQG.

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>B</th>
<th>LQG Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>( J_1 )</td>
<td>0.3508</td>
<td>0.3232</td>
<td>0.283</td>
</tr>
<tr>
<td>( J_2 )</td>
<td>0.5524</td>
<td>0.5087</td>
<td>0.440</td>
</tr>
<tr>
<td>( J_3 )</td>
<td>0.4093</td>
<td>0.4894</td>
<td>0.510</td>
</tr>
<tr>
<td>( J_4 )</td>
<td>0.3600</td>
<td>0.4137</td>
<td>0.513</td>
</tr>
<tr>
<td>( J_5 )</td>
<td>0.5667</td>
<td>0.5891</td>
<td>0.628</td>
</tr>
</tbody>
</table>

The control signal \( u \) used during the simulation subjected to the El-Centro Earthquake is represented in Figure 2, while the one associated with the Hachinohe earthquake is shown in the Figure 3.
Table 5: Evaluation criteria for the El-Centro and Hachinohe records. Comparison between the two designed fuzzy controller and the suggested LQG controllers

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
<th>LQG Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_6$</td>
<td>0.4610</td>
<td>0.4959</td>
<td>0.4748 0.456</td>
</tr>
<tr>
<td>$J_7$</td>
<td>0.8423</td>
<td>0.8972</td>
<td>0.8666 0.681</td>
</tr>
<tr>
<td>$J_8$</td>
<td>0.5531</td>
<td>0.4632</td>
<td>0.6249 0.669</td>
</tr>
<tr>
<td>$J_9$</td>
<td>0.5216</td>
<td>0.5086</td>
<td>0.6474 0.771</td>
</tr>
<tr>
<td>$J_{10}$</td>
<td>1.1134</td>
<td>1.3866</td>
<td>1.2994 1.280</td>
</tr>
</tbody>
</table>

Table 6: Active Mass Driver response for case A fuzzy controller; the units are: Volts, cm, and g=981 $\text{cm} \text{sec}^{-2}$.
Table 7: Active Mass Driver response for case B fuzzy controller; the units are: Volts, cm, and g=981 \text{cm} \text{sec}^{-2}

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>El-Centro</th>
<th>Hachinohe</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_u$ (V)</td>
<td>0.1580</td>
<td>0.1764</td>
<td>0.0953</td>
</tr>
<tr>
<td>$\sigma_{\dot{x}\text{am}}$ (g)</td>
<td>1.0545</td>
<td>1.1600</td>
<td>0.8260</td>
</tr>
<tr>
<td>$\sigma_{x\text{am}}$ (cm)</td>
<td>0.6411</td>
<td>0.7192</td>
<td>0.3758</td>
</tr>
<tr>
<td>max $</td>
<td>u</td>
<td>$ (V)</td>
<td>0.7814</td>
</tr>
<tr>
<td>max $</td>
<td>\dot{x}\text{am}</td>
<td>$ (g)</td>
<td>5.2670</td>
</tr>
<tr>
<td>max $</td>
<td>x_m</td>
<td>$ (cm)</td>
<td>2.7661</td>
</tr>
</tbody>
</table>

5.2 Stability of the fuzzy controller

Only few methods are available that guarantee or check stability of fuzzy controllers. Validation is performed with simulations and tests (Casciati, 1997).

The control stability must be checked as the ability of the controlled system to return at rest from initial conditions that were caused by the external disturbance. In practice ones runs the dynamic simulation, selects the state variables that seems to show the worse response and then runs the controlled system using the worse values of the selected state variables. The test consists of checking the ability of the controller to reduce the response and to drive the system to the rest position after the initial transient phase.

The stability tests are performed considering the system with particular initial conditions on the state vector $x$ and checking the ability of the controller to reach the equilibrium after the initial transient phase as shown in the Figures 4, 5 and 6.

Non zero initial conditions are assigned to the the components of the state vector $x$ that maximize the controller action, i.e. $x(5)$ and $x(23)$. 
Figure 2: Control signal obtained during the simulation with the structure subjected to the El-Centro record

6 Conclusions

The results presented in this work show how the use of a fuzzy control approach can represent a possible way to control the response of a structural system controlled by an active mass driver. The advantage of the proposed approach is essentially the limited number of measured structural responses (the two storey velocities) used to implement the control rules and its intrinsic robustness.

An extension to incorporate geometric and material nonlinearities does not require any modification in the control scheme.

References

Figure 3: Control signal obtained during the simulation with the structure subjected to the Hachinohe record


Figure 4: Fuzzy controller stability test for the initial condition $x_0(5) = 1$

Figure 5: Fuzzy controller stability test for the initial condition $x_0(23) = 1$
Figure 6: Fuzzy controller stability test for the initial conditions $x_0(5) = 1$ and $x_0(23) = 1$