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SUMMARY

Reduced-order, multiobjective optimal controllers are developed for the Notre Dame structural control building model

benchmark.  Standard 

 

H

 

2

 

/LQG optimal control excels at noise and disturbance rejection, but may have difficulty with

actuator saturation and plant uncertainty.  The benchmark problem is adapted to a multiobjective optimal control

framework, using 

 

l

 

1

 

 and 

 

H

 

∞

 

 constraints to improve controller performance, especially attempting to reduce peak

responses, avoid saturation, and improve robustness to unmodelled dynamics.  The tradeoffs between 

 

H

 

2

 

 perfor-

mance, output peak magnitudes, and robust stability are examined.  Several optimal controllers and their performance

on the benchmark are given.
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INTRODUCTION

Spencer 

 

et al.

 

1,2

 

 detailed a building model benchmark problem for studying active structural

control strategies.  The problem defines a base plant that models the structural behavior of a three-

story, single-bay, scale model of a building

 

3

 

, as well as the dynamics of the sensors (an LVDT,

several accelerometers, and a force transducer) and the actuator (an active mass driver or an active

tendon member).  Such a benchmark problem is invaluable for studying various control strategies

with realistic limitations such as actuator saturation, limited actuator stroke, digital controller

implementation, reduced-order controllers, and multiple measures of controller performance and

robustness.

Standard 

 

H

 

2

 

/LQG optimal control design methods typically excel at noise and disturbance

rejection, but may have difficulty with actuator saturation and plant uncertainty.  The addition of 

 

l

 

1

 

constraints may help accommodate requirements such as limiting control output or other peak
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measures of system performance.  Furthermore, 

 

H

 

∞

 

 robust control design methods are advanta-

geous since the model of a plant always contains some measure of uncertainty for any real-world

application, whether due to modelling errors or long-term changes in system dynamics.  With a

small sacrifice in the system 

 

H

 

2

 

 norm from that found using an 

 

H

 

2

 

 (LQG) optimal controller,

giving slightly larger root mean square response to white noise excitation, the 

 

l

 

1

 

 and 

 

H

 

∞

 

 norms can

often be significantly reduced, leading to better performance and more robust stability.  The use of

all three of these norms to devise an optimal controller can combine the strengths of each.

The general formulation of the mixed 

 

H

 

2

 

/

 

H

 

∞

 

 optimal control design problem has been

explored in a number papers (

 

e.g.

 

, Khargonekar and Rotea

 

4

 

, Kaminer 

 

et al.

 

5

 

, Bernstein and

Haddad

 

6

 

), building on 

 

H

 

2

 

 and 

 

H

 

∞

 

 control methods in Doyle 

 

et al.

 

7-9

 

  The 

 

l

 

1

 

 optimal control

problem has also been detailed in various papers and texts (

 

e.g.

 

, Dahleh and Pearson

 

10

 

; Dahleh

and Diaz-Bobillo

 

11

 

; Khammash

 

12

 

).  A number of solution methods have been developed to solve

certain mixed-norm control design problems (

 

e.g.

 

, Whorton 

 

et al.

 

13

 

, Voulgaris

 

14

 

).  For example,

the homotopy algorithm of Whorton 

 

et al.

 

13

 

 uses a linear combination of the objective 

 

H

 

2

 

 and 

 

H

 

∞

 

norms, varying the ratio of the linear coefficients and searching incrementally in the 

 

H

 

2

 

 and 

 

H

 

∞

 

directions to define a family of mixed-norm designs.

To facilitate numerical solutions to general mixed-norm optimal control problems, Jacques,

Canfield, Ridgely, and Spillman

 

15-19

 

 developed a set of numerical algorithms and accompanying

M

 

ATLAB

 



 

 code to search for fixed-order controllers that minimize an 

 

H

 

2

 

 norm while constraining

one or more 

 

H

 

2

 

, 

 

l

 

1

 

 (or 

 

L

 

1

 

), and 

 

H

 

∞

 

 norms below some critical values.  These algorithms, which can

be used for continuous- or discrete-time systems, have been adapted to the current problem with

alteration of the associated software.

BENCHMARK PROBLEM REQUIREMENTS

The base plant

 

1,2

 

 is described by the block diagram in Fig. 1 and by the state equations

      (1)

where  is the state vector (in  for the active mass driver (AMD) system and in  for the

active tendon system (TEN)),  is the measurement vector,  is a vector of responses to be regu-
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lated,  is the actuator input,  is the seismically-induced ground acceleration, and  is the

sensor noise (independent, zero-mean, Gaussian white noise processes).  The components of the

output measurement  and regulated response , the former corrupted by sensor noise, include

the displacement  and velocity  of the ith floor relative to the ground, absolute accelerations of

the ith floor  and the ground , relative actuator displacement  and velocity , and either

the active mass absolute acceleration  or the active tendon force .  In the active tendon system,

the tendon force  replaces the active mass acceleration  in both  and  in (1).  Interstory

drifts are defined as , , and .

The coefficient matrices in (1) represent the input-output behavior of the building models in

the Notre Dame Structural Dynamics and Control / Earthquake Engineering Laboratory (SDC/

EEL) up to 100Hz (the AMD system) and the National Center for Earthquake Engineering

Research (NCEER) up to 50Hz (the TEN system).  Both sets of coefficient matrices were distrib-

uted in a MATLAB   MAT-file as a part of the benchmark problem definition.20

The goal, then, is to design a stable, discrete-time controller with sampling period ,

subject to several implementation constraints:

(a) the sensor noise components are Gaussian rectangular pulse processes of 1 ms duration
and root mean square magnitude 0.01 V.

(b) the A/D and D/A converters at the controller input and output have 12-bit precision and
a span of ;

(c) the controller may have no more than 12 states; and

(d) the resulting actuator response must be within the bounds of the 6 hard constraints,
, , as defined below.

Figure 1. Block diagram of benchmark plant.
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The performance of the controller is then judged by 10 performance measures, , , as

summarized below.

RMS Responses to Kanai-Tajimi Excitation Spectrum

The first five performance measures are root mean square responses to a family of Kanai-

Tajimi excitation spectra.21  The two-sided spectral density  is given by

        (2)

where the frequency  and damping ratio  of the bedrock-ground connection are in given

ranges ( ,  as per Table I).  (The intensity of the excitation is such that , the

root mean square ground acceleration, is given in Table I and is independent of  and .)  The

performance measures, weighted by the nondimensionalization parameters  in Table I, are root

mean square structural response (maximum interstory drifts and maximum floor acceleration) and

actuator response (actuator displacement, velocity, and acceleration or force), defined by

            (3)

      (4)

with the constraints

            (5)

where , , , and .  RMS responses are computed via

a SIMULINK   block similar to that in Spencer et al.1,2 up to 300 (AMD) or 750 (TEN) seconds.

Ji 1 i 10≤ ≤
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Table I. Performance measure normalization parameters and benchmark constants.
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AMD 0.03 V2 [20,120] 0.12 g 3 cm 9 cm 1.31 cm 1.79 g 1.31 cm 47.9 1.79 g
3.37 cm 5.05 g 3.37 cm 131 5.05 g El Centro

1.66 cm 2.58 g 1.66 cm 58.3 2.58 g Hachinohe

TEN
587.5 
(mV)2

[8,50] 0.034 g 1 cm 3 cm 2.34 cm 0.485 g 2.34 cm 33.3 289 kN
6.45 cm 1.57 g 6.45 cm 99.9 

289 kN
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3.78 cm 0.778 g 3.78 cm 56.1 Hachinohe
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σ ẋ̇m
a

σ ẋ̇m
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Peak Responses to NS Records of the 1940 El Centro and 1968 Hachinohe Earthquakes

The remaining five performance measures are peak responses to the scaled ground accelera-

tion records of two actual earthquakes.  (The records and appropriate scaling were defined in the

benchmark.20)  The performance measures are

            (6)

      (7)

with constraints

            (8)

where , , and .

Performance of a “Sample” LQG Controller for the Active Mass Driver System

One “sample” controller, based on an LQG design that weights the three floor accelerations

equally and feeds back the accelerations of the three floors and the active mass, was computed by

Spencer et al.1; the resulting values of the performance measures are given in Table II.

NOTATION AND MATHEMATICAL DEFINITIONS

Various signal and system norms are used in formulating the multiobjective optimization problem

to solve for mixed-norm optimal controllers.  A brief mathematical description of these norms and

their use in the current problem are as follows.

Let  be a real-valued vector process in , with its discrete-time correspondent, ,

with sampling time .  The -norm of this signal may be defined as

J6
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--------------- or 
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xm
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t
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uMAX =3V ẋ̇m
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Table II. Performance of sample LQG controller on the AMD system.

0.283 0.440 0.510 0.513 0.628 0.456 0.711 0.670 0.775 1.34 0.143 0.56 0.224 0.175 0.605 0.222

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 C1 C2 C3 C4 C5 C6

x t( ) ℜ m x
˜

k( )
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(9)

The special cases for the 1-, 2-, and ∞-norms are

(10)

where  denotes complex-conjugate transpose.  (The sampling time is included in the discrete-

time signal norms so that, assuming  is sufficiently small, the resulting norms are equivalent to

that of the continuous-time signal.)  A continuous-time signal is in  (a Lebesque space), or a

discrete-time signal in , if its -norm is finite.

Let  and  denote the continuous- and discrete-time transfer functions of a system,

respectively, with corresponding impulse response functions,  and .  Furthermore, let 

and  be excitation and response (input and output of the system), respectively.  Then several key

norms may be written as (  denotes the largest singular value)

(11)

The H2 norm of a system reflects the root mean square response to Gaussian white noise exci-

tation, and thus it is central to control design for the benchmark problem; minimizing the closed

loop H2 norm  will minimize the root mean square output .  The H∞ norm is a worst-case

magnification of excitation “energy” into the system response (i.e., ); it

also can be used to measure the worst-case sensitivity of the stability of the closed-loop system to

unmodelled dynamics, such as high-frequency modes that are often neglected or have low signal-
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to-noise ratios (making them difficult to model accurately).  Thus, to minimize the H∞ norm

around an unknown block of unmodelled dynamics for robust control design will minimize the

sensitivity of the closed-loop stability to the uncertainties in the model.  Finally, the L1 norm (or

the l1 norm for discrete-time systems), is the worst-case magnification of input magnitude; mini-

mizing the L1 norm can often decrease peak responses.

MULTIOBJECTIVE OPTIMAL CONTROL

The Mixed-Norm Toolbox18,19, also known as MXTOOLS, is designed to solve mixed-norm, fixed-

order, optimal control problems by choosing a controller of a selected order to minimize an H2

norm subject to one or more H2, L1 or l1, and H∞ norm constraints.  Assuming a base H2 problem,

one L1 or l1 constraint, and one H∞ constraint, the problem is described by the the interrelated

systems in Fig. 2 and the corresponding continuous-time state-space descriptions

   (12)

(or similar discrete-time equations), where state vectors , , and  may have some or all

states in common and the measurements , , and  are equal in the absence of disturbances

, , and , i.e., .  The input  is a zero-mean Gaussian white noise of

unit intensity (i.e.,  or , where  is the

sampling period), the input  is assumed to be an unknown magnitude-bounded signal with

, and the input  is assumed to be an unknown energy-bounded signal with .  No

relationships are assumed between , , and  or between , , and .

The H2/L1/H∞ (or H2/l1/H∞) optimization problem is then to find an admissible, stabilizing

controller , with state space description , of a fixed order, that achieves

    subject to     and (13)

 2

Tzw

Tyw
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 
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u  

e  

y  

Tmr

Tyr
 
Tmu

Tyu 
 
 r  

u  

m  

y   1  ∞

Figure 2. MXTOOLS plant with a base H2 system, an L1 or l1 constraint, and an H∞ constraint.

Base H2 Problem L1 or l1 Constraint H∞ Constraint
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y2 y1 y∞
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T
---I δkl= T
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r ∞ 1≤ d d 2 1≤
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The requirements for solution with the fixed order at least that of the base H2 subproblem are

• the base H2 subproblem must have  stabilizable and  detectable,

• the base H2 subproblem must be well posed, i.e.,  is invertible,

• the overall problem must be non-singular, and

• for continuous-time systems,  so that  is finite.

For a controller of lesser order, an additional requirement is the existence of a stabilizing

controller of the given order that satisfies the constraints.

MXTOOLS parameterizes the controller in modal form to reduce the number of design variables

(generally disallows repeated controller eigenvalues; one could modify MXTOOLS to use a full

state-space, or any other, parameterization if repeated eigenvalues are thought to be required).  The

objective function, the constraints, and their gradients, are constructed17 and passed to any

constrained optimization algorithm.  The default solver uses a sequential quadratic programming

(SQP) method similar in function to MATLAB ’s Optimization Toolbox22 constr  function, but

handles larger problems more effectively (constr  often has difficulty maintaining a positive

definite approximation to the Lagrangian Hessian for problems with more than 40 or 50 design

variables).

The formulation above assumes one L1 or l1 constraint and one H∞ constraint.  Similar formu-

lations for an arbitrary number of constraints may be performed.  The current implementation of

MXTOOLS is limited to one MIMO L1 or l1 constraint, though this is of no difficulty since several

L1 or l1 constraints can be combined into one with appropriate scaling.

A few caveats in the use of MXTOOLS must be noted.  First, no information is available as to

how distant a computed fixed-order solution is from the true optimal, order-free solution.19  For

the benchmark problem, this is not of great concern since the controller order is restricted.

Second, the search for reduced-order controllers may be more susceptible to the problem of local

minima, but may be significantly easier to solve due to the reduced search space dimension.19

Third, the l1 norm tends to be quite conservative for most magnitude-bounded, but otherwise

unknown, inputs, and therefore its values ought to be regarded in a relative, qualitative sense,

rather than a measure of the actual performance on magnitude-bounded output constraints.17

The MXTOOLS software was a useful tool in solving the multiobjective problems in this study,

though a fair amount of “tweaking” and a few bug fixes were necessary in the process.

A2 B2,( ) A2 C2,( )

I D cDyu+( )

Dzw DzuDcDyw+ 0= Tzw 2
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FORMULATION OF THE SUBPROBLEMS

The benchmark problem can be augmented by various static and dynamic weights to transform it

into a form suitable for a mixed-norm optimal controller search.  One aspect of the benchmark

problem rather indirectly addressed in the control design here is the 200 µs computational delay at

the plant input (time to compute the control action and perform the A/D and D/A conversions); it

is included here only in the H∞ subproblem as a part of the plant uncertainty.  If the delay were

larger or considered more important, the base plant could be explicitly augmented from the start

(at the plant input) with a Padé approximation of the delay.23

Some of the formulation given below is in continuous-time terms, but all such transfer func-

tions were converted to discrete-time for the control optimization problem.

Base H2 Problem

The base H2 problem can be formulated by adding to the base plant various weighting func-

tions for normalization, as shown in Fig. 3, where  is a  vector of zero-mean, Gaussian

white noises with .  One element, or channel, of  is filtered through

the second-order system  to model the Kanai-Tajimi spectrum

(14)

using the ground parameters  and  that cause the worst uncontrolled response ( ;

 for the active mass driver system and  for the active tendon

system).  The remaining elements of  are weighted to model the sensor noise.  At the output

side,  is a weight on the control effort and  is a normalization factor.   is a matrix used

to rearrange the outputs of the base plant into the elements to be regulated;  converts from

Volts to the dimensional units and then  nondimensionalizes.   is a diagonal matrix to

weight the normalized criteria differently as required for improved controller performance (the
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Figure 3. Block diagram of the base H2 problem.  (Note: “DEMUX” is a demultiplexer that separates two 
sets of signals in a multi-signal line; “MUX”, or multiplexer, combines several channels into one vector signal.)
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identity matrix was found acceptable in the final designs herein).  The resulting output vector 

contains weighted forms of the three interstory drifts, the three floor accelerations, and the

actuator relative displacement, relative velocity, absolute acceleration (actuator force for the active

tendon system), and control effort.

       (15)

H2 Constraints

The benchmark requires that the root mean square controller output, actuator displacement,

and actuator acceleration/force be less than critical values, to remain within the operational range

of the actuator.  This can be formulated as an H2 constraint on the system shown in Fig. 4, where

the new weights are given by

      (16)

and where  is a diagonal matrix to be determined for best performance.  More properly, three

H2 constraints, one for each element of  will be used herein (though one may substitute the single

constraint in the interests of computational feasibility).

z

J1-5 diag

j1   j1   j1[ ] T

j2   j2   j2[ ] T

j3   j4   j5[ ] T 
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ẋ̇g

Base Plant

M zz Wq
M
U
X

Wz

Wu

q

Figure 4. Block diagram of the H2 constraints.

WKT

u

w
Wv

D
E
M
U
X

z weights[ ]
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l1 Constraints

The use of l1 constraints permits the inclusion of the hard peak constraints of the actuator (to

avoid saturation) as well as to facilitate bounding the performance of the peak response portion of

the benchmark as measured via  through .  The block diagram of the l1 constraint

subproblem is shown in Fig. 5, where the weights, chosen to reflect actuator peak constraints and

the desired performance of the peak responses, are given by

         (17)

The output vector , the system responses whose peak magnitudes should be constrained or

minimized, is the same as  in the base H2 problem but with different weights.  The input  is the

disturbance, which should be a bounded-magnitude signal for this subproblem (i.e., in l∞); the

problem was studied with two input weights : unity and a Kanai-Tajimi filter to more closely

model earthquake input spectra (in which case  corresponds to the acceleration of bedrock in the

Kanai-Tajimi earthquake model).  The matrix  serves as a final scaling matrix and to select

elements to include in the output vector .

It was observed in evaluation of several controllers that four of the ten elements of  were

critical (weighted measures of the 2nd and 3rd floor accelerations,  and ; actuator velocity

; and actuator acceleration/force ); due to the expense of computing the l1 norm and its

gradient, the matrix  was used to select only those four outputs in  during the optimization.

H∞ Constraints

One typical purpose for involving H∞ in many problems is to minimize the error in tracking

given command inputs, generally by minimizing the weighted sensitivity of the system.  The
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problem at hand, however, is involved with augmenting the inherent damping in the structure.

There is some concern that the nominal plant may not be entirely accurate, partly due to the inac-

curacies involved with any model derived from experimental data, and partly due to the fact that

high frequency dynamics (above 100 Hz for the AMD system, and above 50Hz for the TEN

system) were truncated in forming the state-space model given in the benchmark problem.  For

this reason, a multiplicative uncertainty at the plant input is assumed, as seen in Fig. 6, with the

dynamic weight  to account for the primarily high-frequency unmodeled

dynamics, the 200 µs computational delay, and the input loop gain robustness requirement above

35Hz (15Hz was used for the TEN system).  The resulting H∞ constraint would be to include the

“unmodelled dynamics” block in Fig. 6, where   and  and reflect the input and output of the

unmodelled dynamics.

If taken by itself as an H∞ control design problem, this H∞ constraint has the trivial solution of

the zero controller because the system is already stable, and the controller that minimizes the

infinity norm of the transfer function from  to  is identically zero.  This is not an inherent

problem with the multiobjective problem, but for purposes of comparison, it is convenient to add

an additional uncertainty block so that a base H∞ controller can be designed.  A robust perfor-

mance control design problem can be solved using a fictitious uncertainty block, so such a block is

placed at the plant output.  The resulting design will not only be robustly stable, but its output

performance should also be robust.

The weights for this additional block include the static diagonal weight  and its inverse to

normalize by the uncontrolled infinity norm for each channel, and the weight , which could be

dynamic, but here will be set to identity.

P
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CONTROLLER DESIGNS:  ACTIVE MASS DRIVER SYSTEM

Performance with Zero Controller

In order to properly judge superior control designs, the performance of the system with the

“zero controller” (a 0V command signal always sent to the actuator) was first evaluated.  Since the

“closed-loop” system is linear, the RMS responses to the Kanai-Tajimi spectra can be efficiently

computed by solving a Lyapunov equation (if a multi-input, single-output (MISO) system has

Laplace transform , where  is a zero-mean, Gaussian white noise vector

process with , then the expected output is ).

The peak responses to the known earthquakes can be simulated quickly via lsim  in MATLAB  .

The resulting performance data are given in column #1 of Table IV (including the Kanai-

Tajimi parameters  and  that maximized the RMS values).  For purposes of verification,  the

worst-case RMS and peak third-floor responses, used in the  performance weights, were

computed and are shown in Table III; they are fairly consistent with the  given above in Table I.

Performance with Sample Controller

In order to verify that the evaluation software was performing properly, the sample controller

supplied with the benchmark proposal was evaluated.  The results, shown in column #2 of Table

IV, are consistent with those detailed in the benchmark and given above in Table II (with the

exception of , which in Table II may reflect just one of the two earthquakes in the benchmark),

demonstrating that the evaluation software operates satisfactorily.

Base H2 (LQG) Design

The primary parameter to be determined in a base H2 design is the relative weight on the

control effort, .  Full-order, discrete-time H2-optimal controllers were computed using a wide

Y s( ) G s( )W s( )= w t( )

E w t( )wT s( )[ ] I δ t s–( )= E y2 t( )[ ] yRMS
2 G 2

2= =

ωg ζg

j i

Table III. Worst-case third-story responses with the zero controller

actuator earthquake
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1.312911 cm
ωg=37.2674 

ζg=0.30000

47.8787 
ωg=37.3078 

ζg=0.30000

1.787342 g
ωg=37.3000 

ζg=0.30000

3.444070 cm 131.3235 5.051008 g El Centro

1.662584 cm 58.6767 2.696785 g Hachinohe

TEN
2.386049 cm
ωg=14.5478 

ζg=0.30000

33.2794 
ωg=14.5764 

ζg=0.30000

0.485246 g
ωg=14.5635 

ζg=0.30000

6.574704 cm 99.9140 1.573521 g El Centro

3.850504 cm 56.0717 0.777907 g Hachinohe
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range of control effort values to minimize .  The resulting RMS performance and constraint

values, assuming the system is sufficiently linear to apply the appropriate Lyapunov equations, are

shown in Fig. 7.  It is a worthwhile tradeoff to allow a larger control effort and greater actuator

dynamics for the sake of reducing the larger performance and constraint values by letting  be

unity.  A choice of  gains little in the way of the RMS performance and constraints, but

may limit the ability to increase robustness and output magnitudes in subsequent optimization.

Two initial reduced order H2 controllers were computed, one by a Hankel norm model reduc-

tion of the full H2 controller, and the other by first reducing the plant and then designing an H2

controller.  These two designs were then used as initial conditions in a minimization of the H2

norm of the closed loop formed with the full-order plant and the reduced-order controller.  The

performance on the benchmark for the resulting (reduced-order) H2 optimal controller is given in

column #3 of Table IV.

Two additional reduced-order controllers are used as starting points in the H2/H∞ optimization

below, computed in a manner similar, but doing H∞ control designs by minimizing .

The base H2 problem contains somewhat conflicting goals, since the response of the structure

and the response of the actuator cannot be simultaneously minimized.  Figure 8 shows the tradeoff

between the RMS structural response  (simply the first six outputs of  in the base H2

Tzw 2

Figure 7. Control weight tradeoffs for the base H2 controller in the AMD system.
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plant) and the RMS actuator response  (the three actuator responses in ).  (The

constraints were ignored in the minimization, but are noted in the graph where violations

occurred.)  The benchmark performance of the controller that minimized the RMS actuator

response is given in column #4 of Table IV, while column #5 gives the performance of the

controller that minimized the RMS structural response while not violating RMS constraints (it did

violate the peak active mass acceleration, but it is useful to see what the performance would be

without the peak constraints).  If the relative importance of these two sets of responses were

known, one could appropriately weight the structural and actuator responses in the base H2

problem; in the mixed-norm designs below, however, they are weighted equally.

Mixed H2/H∞ Design

About 100 different control designs were computed via the optimization software to study the

tradeoffs between H2 and H∞ performance.  The norms of the resulting closed-loop systems are

plotted in Fig. 9; some of the designs obviously stalled at local minima, but a number of them

demonstrate quite clearly that significant robust stability and robust performance can be obtained

with near H2 performance.  (Note that the Pareto curve is approximate since the points from

computed control designs are upper and right bounds on the curve, while constant lines at the

closed-loop ∞-norm with the full-order H∞ controller and the 2-norm with the H2 controller are

Figure 8. /  tradeoffs between RMS structural and actuator responses for the AMD system.H2
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left and lower bounds, respectively.)  The two circled larger ×’s near the minimum H2 have

2-norms only 0.86 and 0.015 percent above minimum, but at one thirteenth and one eighth of the

infinity norm of the reduced-order H2 optimal design.  Such design points introduce significant

robustness with negligible changes in RMS outputs to white noise excitation.  The third circled

large × has the opposite tradeoff, with a closed-loop infinity norm nearly that of the H∞ optimal

controller, but with a RMS output over 30% less.

The benchmark performance values for several of the (near-) Pareto optimal designs are

graphed in Fig. 10, where it can be seen that the performance changes little for vast robustness

improvements.  The performance on the benchmark problem for the first of the above mentioned

designs is given in column #6 of Table IV, and its input loop gain is shown in Fig. 11; this design

far exceeds the robustness requirements in the benchmark description with little or no perfor-

mance degradation.  The performance of the controller resulting in the least mean square of the

performance and constraint values (i.e., ) is given in column

#7 of Table IV; this controller was one that significantly decreased the peak active mass accelera-

tion.

If the robust performance component of the H∞ constraint is removed, the resulting system has

the zero controller as the H∞ optimal robust controller.  This complicates the characterization of

the Pareto optimal tradeoff between the robust stability sensitivity, denoted here with , and

Figure 9. Pareto optimal curve for H2/H∞ AMD controllers.
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the H2 RMS response.  Nevertheless, a number of mixed H2/  controllers were found as shown

in Fig 12.  The circled large × represents a controller that provides a closed-loop RMS output only

0.28% larger than the reduced-order H2 optimal controller but 50 times as robust.  The benchmark

performance of this controller is given in column #8 of Table IV.

Figure 10. Linear performance and constraint values for (near-) Pareto H2/H∞ optimal AMD controllers.
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Mixed H2/l1 Design

The H2/l1 optimization problem is more difficult than the H2/H∞ for several reasons.  First,

computing the l1 norm and its gradients with respect to controller parameters is quite expensive,

limiting the number of trials that could be tested.  The second is the lack of a good starting point;

in the H2/H∞ design, it was observed that the optimization algorithm more readily relaxed

constraints than restrict them, so using the H∞ optimal controller as the starting point worked well.

Here, the l1 optimal controller was unknown; several semianalytical methods, including those of

Khammash12, were applied to solve for the l1 optimal controller, but the combination of very low

damping in some modes and high frequency actuator dynamics prevented a solution.  Conse-

quently, the optimization software was modified to do unconstrained l1 optimization, which facil-

itated finding a number of controllers with smaller closed-loop l1 norms (but with no knowledge of

the proximity to the l1 optimal controller).

Two different mixed H2/l1 strategies were attempted to determine if one or the other had an

impact on the peak performance and constraint measures defined above.  The first used the l1

constraint with a constant weight on the input.  About 40 mixed H2/l1 designs were computed and

are shown in Fig. 13.  The l1 norm was reduced somewhat from the H2 optimal controller, but not

nearly as significantly as the H∞ norm above.  Some of these designs lowered the l1 norm of the

Figure 12. H2/  RMS performance and robust stability sensitivity for the AMD system.H∞∞∞∞
RS
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curve is poorly defined at the low l1-norm end due to difficulties with local minima.  The large

circled × is the controller that obtained the smallest closed-loop l1 norm.

The second set of mixed H2/l1 designs used a frequency-dependent input weight, that of the

Kanai-Tajimi spectrum (with the ground frequency and damping that caused the worst response

with the zero controller), to more closely model an earthquake record; to denote the frequency-

dependent weight, these designs will be called H2/ .  The results of the 55 H2/  designs are

plotted in Fig. 14.  The Pareto curve is a little better defined here, but without an optimal l1

controller to give the lower bound, it is impossible to define the curve with much certainty.  The

results here are similar in that 5-10% drops in closed-loop l1 norm can be achieved with only

nominal sacrifice in H2 performance.

Unfortunately, little correlation was found in the end between the closed-loop l1 norm and the

values of the peak performance  and constraint  values, as shown for the non-frequency-

dependent H2/l1 designs in Fig. 15 over a range of the l1 norm.  The irregularity of the lines is to

be expected, but the obvious lack of a general proportional trend between the l1 norm and the

performance/constraint values shows that the l1 norm of the closed-loop cannot be used to predict

peak responses to the known earthquake records.

Figure 13. Mixed H2/l1 optimal controllers for the AMD system (no frequency dependent weight).
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The lack of correlation was rather surprising at first, but, in retrospect, it makes some sense.

The l1 norm is the worst-case peak output over a very wide class of input excitations, those that are

magnitude bounded (i.e., those signals in l∞), which includes persistent signals that have DC

Figure 14. Mixed H2/  optimal controllers for the AMD system (Kanai-Tajimi frequency-dependent weight).l 1
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Figure 15. Peak linear performance and constraints are uncorrelated with closed-loop l1 norm.
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offsets and long-term non-decaying behavior.  The earthquake records used to evaluate the peak

response of the closed-loop system for the benchmark, however, are finite in duration and more

properly belong to the class of energy bounded signals (l2).  The worst case output magnitude over

all possible energy-bounded inputs is governed by the H2 norm of the system.  Thus, the H2 norm

should be a better measure of peak output magnitudes than the l1 norm for the excitations of

interest here.

CONTROLLER DESIGNS:  ACTIVE TENDON SYSTEM

Performance with Zero Controller

The performance of the active tendon system with the zero controller is given in column #9 of

Table IV.  This system has significantly tighter constraints, primarily on the actuator command

voltage  and actuator force .

Base H2 (LQG) Design

The analysis parallels that of the AMD system.  The base H2 tradeoff between performance

and control effort is shown in Fig. 16.  The control effort weight  has a very narrow admissible

range since setting it to larger than 1.874 results in systems that violate the constraint on the

C4 C5

Figure 16. Control weight tradeoffs for the base H2 controller in the TEN system.
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actuator force ( ), and for , the resulting controller is unstable.  Thus, the

weight chosen here is again unity.

Several initial H2 controllers, first full-order, then reduced order, were computed as described

for the AMD system above; the resulting benchmark performance data for the best reduced-order

H2 design is given in column #10 of Table IV.  It must be noted that the actuator velocity here

reached its peak in a very different location in  space than other RMS performance and

constraint values.  A reduced-order H∞ optimal controller were also used as initial conditions for

mixed optimization.

Mixed H2/H∞  Design

About 100 mixed H2/H∞ designs were computed to study the performance and robustness

tradeoffs of the TEN system.  The resulting norms are shown in Fig. 17; as was previously noted,

the optimization algorithm does get stuck in local minima for many of these designs, but some are

very good at improving robustness with little loss of the H2 benefits.  In fact, the H2 optimal

controllers have terrible robustness characteristics for the active tendon system.  The circled large

×’s are controllers that generate closed-loop plants with 2-norms 1.2 and 0.1 percent larger than

the H2 optimal controller, but with infinity norms about 1/850th and 1/175th that of the H2

controller.  The input loop gains for these two designs are shown in Fig. 18 and the performance

C2 1> Wzu 0.887<

ωg ζg,( )

Figure 17. Pareto optimal curve for H2/H∞ TEN controllers.
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evaluation of the second is given in column #11 of Table IV.  The optimal H2 controller results in

a fair sensitivity to high-frequency modelling errors that could, at worst, cause instability if the the

truncated high-frequency modes dominate under some loading conditions.  The mixed H2/H∞

designs, however, while retaining most of the RMS performance of the H2 design, also capture

some of the robustness of the H∞ optimal controller.

Mixed H2/l1 Design

Due to the computational intensity and its inability to suppress peak responses of the AMD

system, no mixed H2/l1 optimization was done on the active tendon system.

OBSERVATIONS AND CONCLUDING REMARKS

The mixed H2/H∞ optimal control design was able to provide controllers with significantly greater

robustness characteristics at little cost to RMS and peak performance measures defined in the

benchmark.  This was especially noticeable in the active tendon system, where the infinity-norms

of the H2 optimal controllers were quite large.  The robustness was a relatively minor point in the

benchmark definition, but it is a critical safety issue for actively-controlled buildings and must be

included in an evaluation of controller design.

Figure 18. Input loop gain for reduced-order H2/H∞ optimal controller for the TEN system.
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The performance of the controllers mentioned herein is generally better than the sample

controller provided with the benchmark, though the definition of “better” is, of course, rather

application specific and will vary with the requirements of the structure.  The 50 “best” AMD

results here averaged about 20% less than the sample controller (where all 10 performance

measures and the 6 weighted constraints are averaged together), with the best being 28% less.

The computer resources required for the multiobjective optimizations performed for this study

vary significantly depending on what objective and constraint functions are used.  The l1 norms

were routinely significantly more computationally intensive than the others, up to the better part of

a day of CPU time on an HP9000/780 workstation.  Other mixed-norm designs, such as the RMS

structural/actuator response tradeoffs, generally took only a few minutes on the same platform.  A

full Simulink  simulation (up to 300 seconds) of one Kanai-Tajimi spectrum for one controller

took about 105 minutes, so the evaluation was at least as expensive as the design process.

It was observed in the process of doing H2/H∞ mixed designs that the optimization algorithm

more readily relaxed constraints than restricted them, being less likely to get stuck at local

minima.  For example, in an H2/H∞ problem, starting with an H∞ optimal controller and relaxing

the constraint often results in solutions that are closer to the Pareto optimal curve than starting

with a controller that is closer to H2 optimal and searching for a more constrained H∞ value.

It may be noted that the H∞ portion of the problem tends toward the conservative side since the

overall uncertainty is structured due to the two separate uncertainty blocks.  Walker and Ridgely16

have done some work in mixed H2/µ optimization, so the above development could replace the H∞

constraint with a µ constraint to more closely model the true system uncertainty.

Investigation into l1 optimization in the mixed-norm context for this benchmark proved inade-

quate for reducing peak responses and accommodating peak hardware constraints.  Since an earth-

quake is generally an energy-bounded excitation (it dies out after a short time), the l1 norm might

not be the best induced norm to use since that assumes the input to be in too broad a class of

signals (l∞).  (In fact, it may be argued that an earthquake excitation is in l1, an even narrower class

of signals whose l1 norm is bounded.)  The H2 norm, already included for minimizing RMS

response, has a bigger impact on peak outputs to the real earthquake records than did controllers

with small corresponding l1 norms.

This study demonstrates the usefulness of mixed-norm optimization to allow the control

designer to dramatically improve robustness while retaining the performance of H2/LQG optimal

controllers.  Understanding these tradeoffs is essential to the control design process.
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The controllers mentioned herein are available upon request.

The authors would like to acknowledge and thank Prof. D.B. Ridgely and his colleagues for making the MXTOOLS

toolbox available for our use.

Table IV. Performance and constraints of the AMD and TEN systems with various controllers.
The worst case (ωg,ζg) locations were found for each RMS value, using 300 (AMD) or 750 (TEN) seconds of

response to a Kanai-Tajimi excitation, and are given below the corresponding J and C values (ωg is in rads/sec).

1 2 3 4 5 6 7 8 9 10 11

Sys: AMD AMD AMD AMD AMD AMD AMD AMD TEN TEN TEN

Name: Zero SampleH2 Base H2 H2/H∞ #1H2/H∞ #2 H2/ Zero Base H2 H2/H∞

Note: min. accel. 
responses

min. struct. 
& actuator 
responses

min. 
actuator 

responses

min. 
structural 
responses

stability/
perform. 

robustness

least mean 
sq. perf. & 
cnstr. vals

stability 
robustness

min. struct. 
& actuator 
responses

stability/
perform. 

robustness

0.589235
ωg=37.2604
ζg=0.30000

0.284008
ωg=37.1276
ζg=0.30000

0.331097
ωg=37.2728
ζg=0.30000

0.398656
ωg=37.3087
ζg=0.30000

0.148870
ωg=36.8128
ζg=0.30000

0.327632
ωg=37.2682
ζg=0.30000

0.324451
ωg=37.2665
ζg=0.30000

0.313034
ωg=37.2563
ζg=0.30000

0.469652
ωg=14.5492
ζg=0.30000

0.167053
ωg=14.4392
ζg=0.30000

0.167236
ωg=14.4387
ζg=0.30000

0.998515
ωg=37.3000
ζg=0.30000

0.439718
ωg=37.0922
ζg=0.30000

0.476400
ωg=37.2648
ζg=0.30000

0.632393
ωg=37.4397
ζg=0.30000

0.221632
ωg=36.5708
ζg=0.30000

0.503912
ωg=37.2700
ζg=0.30000

0.498581
ωg=37.2628
ζg=0.30000

0.479473
ωg=37.2476
ζg=0.30000

1.000507
ωg=14.5635
ζg=0.30000

0.359133
ωg=14.4931
ζg=0.30000

0.359519
ωg=14.4929
ζg=0.30000

0.072189
ωg=37.2522
ζg=0.30000

0.511574
ωg=37.0152
ζg=0.30000

0.435891
ωg=37.2366
ζg=0.30000

0.283548
ωg=37.3355
ζg=0.30000

1.072474
ωg=36.3575
ζg=0.30000

0.404407
ωg=37.3585
ζg=0.30000

0.398811
ωg=37.2862
ζg=0.30000

0.433318
ωg=37.2743
ζg=0.30000

0.008641
ωg=14.5400
ζg=0.30000

0.025988
ωg=14.7564
ζg=0.30000

0.025956
ωg=14.7542
ζg=0.30000

0.082320
ωg=37.4052
ζg=0.30000

0.512567
ωg=37.1222
ζg=0.30000

0.440530
ωg=37.4334
ζg=0.30000

0.288202
ωg=37.4246
ζg=0.30000

1.047233
ωg=37.4442
ζg=0.30000

0.410838
ωg=37.5295
ζg=0.30000

0.403989
ωg=37.3699
ζg=0.30000

0.438351
ωg=37.4553
ζg=0.30000

0.008651
ωg=14.5763
ζg=0.30000

0.065933
ωg=50.0000
ζg=0.75000

0.061770
ωg=50.0000
ζg=0.75000

1.067546
ωg=37.3060
ζg=0.30000

0.626813
ωg=37.0076
ζg=0.30000

0.368803
ωg=37.9657
ζg=0.30000

0.389057
ωg=37.2734
ζg=0.30000

1.056882
ωg=38.6359
ζg=0.30000

0.366769
ωg=37.8947
ζg=0.30000

0.402087
ωg=37.2931
ζg=0.30000

0.370105
ωg=38.1447
ζg=0.30000

0.027074
ωg=14.5386
ζg=0.30000

0.010131
ωg=14.2808
ζg=0.30000

0.010132
ωg=14.2813
ζg=0.30000

0.620058 0.455587 0.449376 0.912614 0.356579 0.453735 0.469161 0.448668 0.478946 0.294108 0.298966

0.717755 0.710194 0.715053 0.710194 0.559262 0.770059 0.805363 0.749228 0.822220 0.775928 0.771151

0.077206 0.667990 0.689468 0.397785 3.159213 0.621133 0.547477 0.687785 0.009316 0.057316 0.057130

0.083293 0.775300 0.880412 0.445912 3.264125 0.783109 0.586780 0.954007 0.010837 0.203174 0.184940

1.142254 1.336047 1.031068 0.513109 4.533990 0.858705 0.682718 1.156828 0.079961 0.040999 0.039997

0 0.143045
ωg=37.1436
ζg=0.30000

0.147656
ωg=37.5456
ζg=0.30000

0.110122
ωg=37.6263
ζg=0.30000

0.365361
ωg=36.7604
ζg=0.30000

0.140550
ωg=37.6811
ζg=0.30000

0.127599
ωg=37.5930
ζg=0.30000

0.146899
ωg=37.5627
ζg=0.30000

0 0.490599
ωg=14.6978
ζg=0.30000

0.490159
ωg=14.6972
ζg=0.30000

0.955454
ωg=37.3060
ζg=0.30000

0.560998
ωg=37.0076
ζg=0.30000

0.330079
ωg=37.9657
ζg=0.30000

0.348206
ωg=37.2734
ζg=0.30000

0.945909
ωg=38.6359
ζg=0.30000

0.328258
ωg=37.8947
ζg=0.30000

0.359868
ωg=37.2931
ζg=0.30000

0.331244
ωg=38.1447
ζg=0.30000

1.956081
ωg=14.5386
ζg=0.30000

0.732025
ωg=14.2808
ζg=0.30000

0.732070
ωg=14.2813
ζg=0.30000

0.031522
ωg=37.2522
ζg=0.30000

0.223387
ωg=37.0152
ζg=0.30000

0.190339
ωg=37.2366
ζg=0.30000

0.123816
ωg=37.3355
ζg=0.30000

0.468313
ωg=36.3575
ζg=0.30000

0.176591
ωg=37.3585
ζg=0.30000

0.174147
ωg=37.2862
ζg=0.30000

0.189215
ωg=37.2743
ζg=0.30000

0.020219
ωg=14.5400
ζg=0.30000

0.060813
ωg=14.7564
ζg=0.30000

0.060737
ωg=14.7542
ζg=0.30000

0 0.175165 0.196315 0.116033 0.514544 0.190882 0.145384 0.200995 0 0.947226 0.951560

0.905539 0.804580 0.705785 0.4318672.8245880.722743 0.574621 0.7742531.9257180.987402 0.963263

0.027950 0.224130 0.225663 0.131725 0.582699 0.216185 0.181141 0.231494 0.020030 0.120719 0.122831

H2
Act H2

Str H∞
RS

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

C1

C2

C3

C4

C5

C6
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