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SUMMARY

Reduced-order, multiobjective optimal controllers are developed for the Notre Dame structural control building model
benchmark. Standatd,/LQG optimal control excels at noise and disturbance rejection, but may have difficulty with
actuator saturation and plant uncertainty. The benchmark problem is adapted to a multiobjective optimal control
framework, using, andH,, constraints to improve controller performance, especially attempting to reduce peak
responses, avoid saturation, and improve robustness to unmodelled dynamics. The tradeoffsHhepsden

mance, output peak magnitudes, and robust stability are examined. Several optimal controllers and their performance

on the benchmark are given.
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INTRODUCTION

Spenceret all? detailed a building model benchmark problem for studying active structural
control strategies. The problem defines a base plant that models the structural behavior of a three-
story, single-bay, scale model of a builcﬂngs well as the dynamics of the sensors (an LVDT,
several accelerometers, and a force transducer) and the actuator (an active mass driver or an active
tendon member). Such a benchmark problem is invaluable for studying various control strategies
with realistic limitations such as actuator saturation, limited actuator stroke, digital controller
implementation, reduced-order controllers, and multiple measures of controller performance and
robustness.

StandardH,/LQG optimal control design methods typically excel at noise and disturbance
rejection, but may have difficulty with actuator saturation and plant uncertainty. The addition of

constraints may help accommodate requirements such as limiting control output or other peak
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measures of system performance. Furthermagerobust control design methods are advanta-
geous since the model of a plant always contains some measure of uncertainty for any real-world
application, whether due to modelling errors or long-term changes in system dynamics. With a
small sacrifice in the systef, norm from that found using ad, (LQG) optimal controller,

giving slightly larger root mean square response to white noise excitatibpatig,, norms can

often be significantly reduced, leading to better performance and more robust stability. The use of
all three of these norms to devise an optimal controller can combine the strengths of each.

The general formulation of the mixdd,/H,, optimal control design problem has been
explored in a number papers.q, Khargonekar and RotéaKamineret al®, Bernstein and
Haddad), building onH, andH,, control methods in Doylet al.’® Thel; optimal control
problem has also been detailed in various papers and ¢egtsDahleh and Pearsth Dahleh
and Diaz-Bobilld!; Khammash). A number of solution methods have been developed to solve
certain mixed-norm control design probleresg( Whortonet all3, Voulgaris?). For example,
the homotopy algorithm of Whortaet al13 uses a linear combination of the objectiieandH,,
norms, varying the ratio of the linear coefficients and searching incrementallyhty dredH,,
directions to define a family of mixed-norm designs.

To facilitate numerical solutions to general mixed-norm optimal control problems, Jacques,
Canfield, Ridgely, and Spillman1® developed a set of numerical algorithms and accompanying
MaTLAB " code to search for fixed-order controllers that minimizelanorm while constraining
one or moréH,, I, (orL,), andH,, norms below some critical values. These algorithms, which can
be used for continuous- or discrete-time systems, have been adapted to the current problem with

alteration of the associated software.

BENCHMARK PROBLEM REQUIREMENTS

The base plaht®is described by the block diagram in Fig. 1 and by the state equations

X = AX+BU+E.Xg %[Xl Xy Xg Xm]TD .

z = Cx+Du+FX, 2= 0% % % %O y=ve[x, 83355 %] @)

y = Cx+Du+FX +v olxg¢ X3 X3 X3l 'g
wherex is the state vector (im2¢  for the active mass driver (AMD) system dan¢f in for the

active tendon system (TEN), is the measurement vector, is a vector of responses to be regu-
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Figure 1. Block diagram of benchmark plant.

lated, u is the actuator inpuk, is the seismically-induced ground acceleratios, and is the
sensor noise (independent, zero-mean, Gaussian white noise processes). The components of the
output measuremert  and regulated respanse , the former corrupted by sensor noise, include
the displacement, and velocity  of ifffloor relative to the ground, absolute accelerations of

thei" floor X2 and the ground, , relative actuator displacemgnt  and velqgity , and either
the active mass absolute accelerati@n  or the active tendorf force . In the active tendon system,
the tendon forcé replaces the active mass accelergtjon iybothz and in (1). Interstory
drifts are defined ad,(t) = Xx,(t) dy(t) = X,(t) —x,(t) , amd(t) = x5(t) — x,(t)

The coefficient matrices in (1) represent the input-output behavior of the building models in
the Notre Dame Structural Dynamics and Control / Earthquake Engineering Laboratory (SDC/
EEL) up to 100Hz (the AMD system) and the National Center for Earthquake Engineering
Research (NCEER) up to 50Hz (the TEN system). Both sets of coefficient matrices were distrib-
uted in a MiTLAB ™ MAT-file as a part of the benchmark problem definiti8n.

The goal, then, is to design a stable, discrete-time controller with sampling perio ms ,
subject to several implementation constraints:

(a) the sensor noise components are Gaussian rectangular pulse processes of 1 ms duration
and root mean square magnitude 0.01 V.

(b) the A/D and D/A converters at the controller input and output have 12-bit precision and
a span ott3V ;

(c) the controller may have no more than 12 states; and

(d) the resulting actuator response must be within the bounds of the 6 hard constraints,
C <1,1<i<6, as defined below.
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The performance of the controller is then judged by 10 performance meaburks,i < 10 , as

summarized below.

RMS Responses to Kanai-Tajimi Excitation Spectrum
The first five performance measures are root mean square responses to a family of Kanai-

Tajimi excitation spectré@ The two-sided spectral densiy ; (w) is given by
g9°g

_ ALguge? + g B 1
Sl = P il P g (424 1)

(2)

where the frequency, and damping rafip of the bedrock-ground connection are in given
ranges {, [ [0.3, 0.79 w, as per Table I). (The intensity of the excitation is sucb;ghat , the
root mean square ground acceleration, is given in Table | and is independgnt of {; and .) The
performance measures, weighted by the nondimensionalization parameters in Table |, are root
mean square structural response (maximum interstory drifts and maximum floor acceleration) and

actuator response (actuator displacement, velocity, and acceleration or force), defined by

ad- O—'>'<F" ax
JyJ=max — J, = max — J; = max— (3)

Wy (i 11 Wy G J2 Wy € I3

gy CT.X% or o;
J, = max—  Jg = max ———— 4)
Wy (g Ja Wy ¢ Is
with the constraints
C, = %ooq ¢, = P 0 %t lc1 co= T o 5
1= MaX—gax = 2 = MaX —gax Of gMAX | = 3 maéx MAX = (5)
g°g ~u g’ °g X3 f o %9 X

whereg"*=1V ,oMA*=2g ,0WA*=4kN , angy = 9.8m/$ . RMS responses are computed via
a SMULINK " block similar to that in Spencet all? up to 300 (AMD) or 750 (TEN) seconds.

Table I. Performance measure normalization parameters and benchmark constants.

actu- MAX | yMAX | j i i i i i i i i i earth-
ator || So Wy Oy, | Ox, " | Xm 1 I> I3 Ja Is I I7 Ig lo | Jio || quake
3.37cm 5.09 |3.37 cm 131.| 5.0§||El Centro
AMD [[0.03V2|[20,120] 2% 012y | 3cm | 9cm| 1.31cm 1.79g 1.31cm 488 1g78 3 l‘*‘iﬁ 9 :
1.66 cm 2.58 |1.66 cn) 58.%| 2.58 |Hachinoh
6.45cm 1.5% |6.45 cm 99.4% El Centro|
TEN 587'2 [8,50] 2% | 0.034g| 1cm | 3cm| 2.34cm 0.4859 2.34tm 355  289&N 9 ifnf 289 kN :
(mV) 3.78 cm 0.778|3.78 cm) 56.%5, Hachinofe
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Peak Responses to NS Records of the 1940 El Centro and 1968 Hachinohe Earthquakes
The remaining five performance measures are peak responses to the scaled ground accelera-
tion records of two actual earthquakes. (The records and appropriate scaling were defined in the

benchmark® The performance measures are

d.(t Xa(t X (t
Js = max M J; = max M Jg = max M (6)
t,i J6 t,i J7 t
El Centro El Centro El Centro
Hachinohe Hachinohe Hachinohe
X (t Xa(t) or f(t
Jg = max M Jio = max M (7)
t Jo t J10
El Centro El Centro
Hachinohe Hachinohe

with constraints

— max U@l _ X500, £
C, = mtaxuMWs 1 C;= mtax camax OF Thax

El Centro El Centro m El Centro
Hachinohe Hachinohe Hachinohe

XMAX —

}sl Ce = mtaxw<1 (8)

whereuMAX =3V ,xaMAX=6g , andfMAX=12kN

Performance of a “Sample” LQG Controller for the Active Mass Driver System
One “sample” controller, based on an LQG design that weights the three floor accelerations
equally and feeds back the accelerations of the three floors and the active mass, was computed by

Spenceet all; the resulting values of the performance measures are given in Table IL.

Table Il. Performance of sample LQG controller on the AMD system.

Jl JZ J3 J4 J5 JG J7 J8 J9 ‘]10 Cl CZ C3 C4 C5 CG
0.283| 0.440] 0510 0513 0628 0456 0711 0670 0775 134 (143 [056 [0.224 |0.175 | 0.605 | 0.222

NOTATION AND MATHEMATICAL DEFINITIONS

Various signal and system norms are used in formulating the multiobjective optimization problem
to solve for mixed-norm optimal controllers. A brief mathematical description of these norms and
their use in the current problem are as follows.

Let x(t) be a real-valued vector processlify , with its discrete-time correspoggent, ,

with sampling timeT . The -norm of this signal may be defined as
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1/p
IIXI|p=[ ZIX(t)Ipdt} %], = {k_ ZIX(k)I} ©)

The special cases for the 1-, 2-, andorms are

0

TS S I5®

=—00 |

by = [ 3 <ol [l

w (10)
x|z = J’x*(t)x(t)dt 12=T Z % (K)x(K)

k==

=~

I, = sypmiaXIxi(t)l Il., = Sgpmiaxm(k)l

where( )" denotes complex-conjugate transpose. (The sampling time is included in the discrete-
time signal norms so that, assumiig is sufficiently small, the resulting norms are equivalent to
that of the continuous-time signal.) A continuous-time signal isin (a Lebesque space), or a
discrete-time signal ih, , ifitp -norm is finite.

Let G(s) andG(2) denote the continuous- and discrete-time transfer functions of a system,
respectively, with corresponding impulse response funct'(fé(t$, C:Bék)d . Furthermore, let
andy be excitation and response (input and output of the system), respectively. Then several key
norms may be written agr( | denotes the largest singular value)

IGI, = miax__[o JZ |G;(D)|dt Lo lIGl, = max _Zoo Z |g”(k)|
! (11)
H,: |G[2= zll—TJ’trace[G*(j WG(jw] dw H,: [G]2= —1—TLtrace[G (619 G(el9)] dw
H.: Gl = sup o[G(jw)] Hot |G, = supo[G(e¥)]

TheH, norm of a system reflects the root mean square response to Gaussian white noise exci-
tation, and thus it is central to control design for the benchmark problem; minimizing the closed
loopH, norm||G||, will minimize the root mean square outjpylt, . Ahenorm is a worst-case
magnification of excitation “energy” into the system response (|G|, = LnDaPZ(IIyIIZ/ ull,); it
also can be used to measure the worst-case sensitivity of the stability of the closed-loop system to

unmodelled dynamics, such as high-frequency modes that are often neglected or have low signal-
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to-noise ratios (making them difficult to model accurately). Thus, to minimizélghaorm
around an unknown block of unmodelled dynamics for robust control design will minimize the
sensitivity of the closed-loop stability to the uncertainties in the model. Finalll, therm (or
thel, norm for discrete-time systems), is the worst-case magnification of input magnitude; mini-

mizing theL,; norm can often decrease peak responses.

MULTIOBJECTIVE OPTIMAL CONTROL

The Mixed-Norm Toolbo¥1° also known as MrooLs, is designed to solve mixed-norm, fixed-
order, optimal control problems by choosing a controller of a selected order to minintize an
norm subject to one or mok®, L, orl;, andH,, norm constraints. Assuming a b&seproblem,
onel, or |4 constraint, and onHl, constraint, the problem is described by the the interrelated

systems in Fig. 2 and the corresponding continuous-time state-space descriptions

X, = AX,+B, w+B,u x;,=A;x;+B, r+B; u X, ,=AX,+B,d+B_ u
z =Cx,+D,w+D,u m=C_x,+D,r+Db,u e =Cx,+D,d+D,u (12)
y, = Cx,+D,,w+D,u y, =C;x;+D, r+D,u y,=Cyx,+Dy,d+Dg,u

(or similar discrete-time equations), where state veotgrsx; , xgnd may have some or all
states in common and the measuremgntsy, , yand are equal in the absence of disturbances
w, r,andd j.e,C,x, = C,x; = C_X,. Theinputw is a zero-mean Gaussian white noise of
unit intensity (e, E[wtwT(s)] = 1dt—-s) or E[wKwT(1)] = 2I19,, whereT s the
sampling period), the input is assumed to be an unknown magnitude-bounded signal with
Irll, <1, andthe inputl is assumed to be an unknown energy-bounded signd wihl . No
relationships are assumed betweenr , ,dnd or betvean , e, and

The Ho,/L4/H,, (or Ho/l1/H,,) optimization problem is then to find an admissible, stabilizing

controllerK , with state space descript{@n, B, C.,D.) , of afixed order, that achieves

inf T subjectto ||T <V an < 13

K admissible” ZW||2 | ” mr”l Hﬂ-ed”oo y ( )
BaseH, Problem L, orl, Constraint H,, Constraint

w— a7, T, 02 r—ar,, T dF—m d_’DTedTeLE_'e

u—»DyWTyUD—>y2 u—|{0d yr TyuD—>yl u—»DydTyuD—>ym

Figure 2. MxToOLS plant with a baseH, system, arlL_, or |; constraint, and anH,, constraint.
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The requirements for solution with the fixed order at least that of the-Hdyaséproblem are
» the baséd, subproblem must hayé\,, B,) stabilizable §Ad, C,) detectable,
* the baséH, subproblem must be well posee,, (1 +D_D,,) isinvertible,
* the overall problem must be non-singular, and

+D, DD, =0 sotha,[, isfinite.

« for continuous-time systemB Pyw

2w
For a controller of lesser order, an additional requirement is the existence of a stabilizing
controller of the given order that satisfies the constraints.

MXTOOLS parameterizes the controller in modal form to reduce the number of design variables
(generally disallows repeated controller eigenvalues; one could modifpdds to use a full
state-space, or any other, parameterization if repeated eigenvalues are thought to be required). The
objective function, the constraints, and their gradients, are constriictad passed to any
constrained optimization algorithm. The default solver uses a sequential quadratic programming
(SQP) method similar in function to AMLAB’s Optimization Toolbo%? constr  function, but
handles larger problems more effectivetprfstr  often has difficulty maintaining a positive
definite approximation to the Lagrangian Hessian for problems with more than 40 or 50 design
variables).

The formulation above assumes aner |, constraint and ond,, constraint. Similar formu-
lations for an arbitrary number of constraints may be performed. The current implementation of
MxTooLs is limited to one MIMOL, or |, constraint, though this is of no difficulty since several
L, orl, constraints can be combined into one with appropriate scaling.

A few caveats in the use ofvlooLs must be noted. First, no information is available as to
how distant a computed fixed-order solution is from the true optimal, order-free séfutfor.
the benchmark problem, this is not of great concern since the controller order is restricted.
Second, the search for reduced-order controllers may be more susceptible to the problem of local
minima, but may be significantly easier to solve due to the reduced search space ditdension.
Third, thel; norm tends to be quite conservative for most magnitude-bounded, but otherwise
unknown, inputs, and therefore its values ought to be regarded in a relative, qualitative sense,
rather than a measure of the actual performance on magnitude-bounded output colfstraints.

The MxTooLS software was a useful tool in solving the multiobjective problems in this study,

though a fair amount of “tweaking” and a few bug fixes were necessary in the process.
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FORMULATION OF THE SUBPROBLEMS

The benchmark problem can be augmented by various static and dynamic weights to transform it
into a form suitable for a mixed-norm optimal controller search. One aspect of the benchmark
problem rather indirectly addressed in the control design here is thes 20hputational delay at
the plant input (time to compute the control action and perform the A/D and D/A conversions); it
is included here only in thid,, subproblem as a part of the plant uncertainty. If the delay were
larger or considered more important, the base plant could be explicitly augmented from the start
(at the plant input) with a Padé approximation of the delay.

Some of the formulation given below is in continuous-time terms, but all such transfer func-

tions were converted to discrete-time for the control optimization problem.

Base H Problem

The baseH, problem can be formulated by adding to the base plant various weighting func-
tions for normalization, as shown in Fig. 3, where i5*al vector of zero-mean, Gaussian
white noises withE [w(t)wT(t + 7)] = I 1) . One element, or channelvof is filtered through

the second-order systeWi; (S)  to model the Kanai-Tajimi spectrum

2. WS+ W2
Vher (8 0y ¢g) = /2T 7 ZnggwgS +gw§ -

using the ground parametexs afid  that cause the worst uncontrolled regperise 0.3 ;

sec sec

wyorst = 37.2 25 for the active mass driver system aferst = 14, ads for the active tendon

system). The remaining elementswof  are weighted to model the sensor noise. At the output

side,W,,, is a weight on the control effort avi(} is a normalization fatqr. is a matrix used
to rearrange the outputs of the base plant into the elements to be regfifated; converts from
\olts to the dimensional units and thép!, nondimensionaliads. is a diagonal matrix to

weight the normalized criteria differently as required for improved controller performance (the

O[d, d, d,] 7O
Base Plant g ' ? d O

O

P : s

u | 5 @; y O u O
— |

| W, W,

xa xa ka ™
[l 2 3]|:|

xc<Z
=

xXcZmo
%l
x

3 .

Figure 3. Block diagram of the baséd, problem. (Note: “DEMUX”" is a demultiplexer that separates two
sets of signals in a multi-signal line; “MUX", or multiplexer, combines several channels into one vector signal.)
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identity matrix was found acceptable in the final designs herein). The resulting outputzvector
contains weighted forms of the three interstory drifts, the three floor accelerations, and the
actuator relative displacement, relative velocity, absolute acceleration (actuator force for the active

tendon system), and control effort.

9ix da i W, = 0.00/T1 W, = 1o
J,.s = diagO[j, j, jJJO 1000
Olis Ja 1 'O 1100 0 0
E 051%[1 11 10 0-110
— A Vs
ZAMD = dlagED.0204cTn[1 11 1 E ) ; ; 3228 . (15)
0 Vi1 11010 Mg, = Zy
9 0010
v T
50'2537“[11131'4815 0001 0000 0000
TEN = dj S
ZEN = dlagEDDlochn[l 11 38.6271 ™0 0000 0001 0000
0 05%[1 11 0448]T 0000 0000 0001

H, Constraints

The benchmark requires that the root mean square controller output, actuator displacement,
and actuator acceleration/force be less than critical values, to remain within the operational range
of the actuator. This can be formulated aslamwonstraint on the system shown in Fig. 4, where

the new weights are given by

or 1 0000 0000 0001
W, = q = =

1/ gMAX or 1/ gWAX 0 O
X5 ' 0 0 = z34 (16)
q 0 1/ gMAX O x, O 2z 0001 0000 00007V
Xm

and whereW, is a diagonal matrix to be determined for best performance. More properly, three
H, constraints, one for each elemengzof will be used herein (though one may substitute the single

constraint in the interests of computational feasibility).

D Base Plan Oxal
e e v _ pwoignsh D
|\>L2| @: )\(/g ¢ —é}——w 24| We |" Y W, z=[weightg E[Xu
ﬁ'tgw git y oug
u ——C ™ J

Figure 4. Block diagram of theH, constraints.
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[, Constraints

The use of; constraints permits the inclusion of the hard peak constraints of the actuator (to

avoid saturation) as well as to facilitate bounding the performance of the peak response portion of
The block diagram df tenstraint
subproblem is shown in Fig. 5, where the weights, chosen to reflect actuator peak constraints and

the benchmark as measured g

throulyh

the desired performance of the peak responses, are given by

%
max { UMAX‘”}

El Centro
Hachinohe

M
I\/Imz = {MZZ}

‘]6—10

2z

The output vectoim

minimized, is the same as

min
El Centro

Hachinohe

1 .
——diag
1%l

[is Je Id"
iz §7 37
Ma(j g, XVAX
Js
ax(j ) X2MAX or fMAX

TOooooooO

I%I:IDI:II:H:IDI:II:I

(17)

, the system responses whose peak magnitudes should be constrained or
in the bBElsgroblem but with different weights. The input

is the

disturbance, which should be a bounded-magnitude signal for this subpralkelem [,); the

problem was studied with two input weigis
model earthquake input spectra (in which case

Kanai-Tajimi earthquake model). The mathi¥,,

elements to include in the output vector

It was observed in evaluation of several controllers that four of the ten elements of

critical (weighted measures of thB92and & floor accelerationsin,

mg; and actuator acceleration/forag,
gradient, the matrixV,,

: unity and a Kanai-Tajimi filter to more closely

anhy

corresponds to the acceleration of bedrock in the

serves as a final scaling matrix and to select

were

; actuator velocity

); due to the expense of computihgritven and its

was used to select only those four outpats in

Base Plan

mZ

rxg#] _E%

-1
‘]6-1C

xXcZ

et

V\(nuJ

014, d,

D ya ya
m= [weights}D[Xl X
y O u

Figure 5. Block diagram of thel; constraints.

H,, Constraints

during the optimization.

d.] O
al TE

'Xa
--3] D
xa] TE
O

One typical purpose for involving,, in many problems is to minimize the error in tracking

given command inputs, generally by minimizing the weighted sensitivity of the system. The
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problem at hand, however, is involved with augmenting the inherent damping in the structure.
There is some concern that the nominal plant may not be entirely accurate, partly due to the inac-
curacies involved with any model derived from experimental data, and partly due to the fact that
high frequency dynamics (above 100 Hz for the AMD system, and above 50Hz for the TEN
system) were truncated in forming the state-space model given in the benchmark problem. For

this reason, a multiplicative uncertainty at the plant input is assumed, as seen in Fig. 6, with the
3s2 + 90s + 600

s? + 300s + 30000

dynamics, the 20Qs computational delay, and the input loop gain robustness requirement above

dynamic weight\, (s)= to account for the primarily high-frequency unmodeled
35Hz (15Hz was used for the TEN system). The resuHiggonstraint would be to include the
“unmodelled dynamics” block in Fig. 6, whery, ~ ahd  and reflect the input and output of the
unmodelled dynamics.

If taken by itself as aHl, control design problem, thid,, constraint has the trivial solution of
the zero controller because the system is already stable, and the controller that minimizes the
infinity norm of the transfer function fromd, #® is identically zero. This is not an inherent
problem with the multiobjective problem, but for purposes of comparison, it is convenient to add
an additional uncertainty block so that a bBisecontroller can be designed. A robust perfor-
mance control design problem can be solved using a fictitious uncertainty block, so such a block is
placed at the plant output. The resulting design will not only be robustly stable, but its output
performance should also be robust.

The weights for this additional block include the static diagonal weight and its inverse to
normalize by the uncontrolled infinity norm for each channel, and the wéight , Which could be

dynamic, but here will be set to identity.

robust

performance
e
A D W. 1
unmodelled d, 2 d E d; | e, ,\L/JI o
dynamics 1e2 '\L/JI . WEZL Wezgg §
- 2
b g Weif [V, X Base Plant t
d]_ 1 Xg We25
K D P =T ;
u eZs i
r y u @ I E y

Figure 6. Block diagram of theH,, constraints.
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CONTROLLER DESIGNS: ACTIVE MASS DRIVER SYSTEM

Performance with Zero Controller

In order to properly judge superior control designs, the performance of the system with the
“zero controller” (a OV command signal always sent to the actuator) was first evaluated. Since the
“closed-loop” system is linear, the RMS responses to the Kanai-Tajimi spectra can be efficiently
computed by solving a Lyapunov equation (if a multi-input, single-output (MISO) system has
Laplace transforn¥(9 = G(s)W(s) , where(t) is a zero-mean, Gaussian white noise vector
process wittE [w(t)wT(s)] = I dt—s9) , then the expected outpu [32(t)] = Yaus = IIGlI3 ).
The peak responses to the known earthquakes can be simulated quitsity vilm MaTLAB .

The resulting performance data are given in column #1 of Table IV (including the Kanai-
Tajimi parametersy, angd, that maximized the RMS values). For purposes of verification, the
worst-case RMS and peak third-floor responses, used in;the performance weights, were

computed and are shown in Table IlI; they are fairly consistent witly the  given above in Table I.

Table 11l. Worst-case third-story responses with the zero controller

actuator a;vorst O’ﬁVOI’St 0_)\((vaorst Xg/o rst )'(:\QVOI’SI 'XgWO rst earth q u ake
3 3 3
1.312911 cm 47.8787%, | 1.787342y |3.444070 cm 131.3238 5.051008| EIl Centro
AMD WF37.26745% | g=37.30785 | y,=37.30005%

{4=0.30000 ¢4=0.30000 ¢~0.30000 | 1.662584 cm 58.676%; 2.696785| Hachinohe

2.386049 cm 33.2794%. | 0.485246g |6.574704 cm 99.914&. 1.573581| El Centro
TEN 14,5478 | (4 =14.57645 | )=14.56355 . . :
{4=0.30000 {4=0.30000 ¢=0.30000 | 3.850504 cm 56.071F; 0.7779971| Hachinohe

Performance with Sample Controller

In order to verify that the evaluation software was performing properly, the sample cor
supplied with the benchmark proposal was evaluated. The results, shown in column #2 of Table
IV, are consistent with those detailed in the benchmark and given above in Table Il (with the
exception ofC; , which in Table Il may reflect just one of the two earthquakes in the benchmark),

demonstrating that the evaluation software operates satisfactorily.

Base H (LQG) Design
The primary parameter to be determined in a b#séesign is the relative weight on the

control effort,W,, . Full-order, discrete-tink,-optimal controllers were computed using a wide

Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark 13
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Figure 7. Control weight tradeoffs for the baseH, controller in the AMD system.

range of control effort values to minimi}& . The resulting RMS performance and constraint

zull2
values, assuming the system is sufficiently linear to apply the appropriate Lyapunov equations, are
shown in Fig. 7. It is a worthwhile tradeoff to allow a larger control effort and greater actuator
dynamics for the sake of reducing the larger performance and constraint values by\lgtting be
unity. A choice ofW,, <1 gains little in the way of the RMS performance and constraints, but
may limit the ability to increase robustness and output magnitudes in subsequent optimization.

Two initial reduced ordefl, controllers were computed, one by a Hankel norm model reduc-
tion of the fullH, controller, and the other by first reducing the plant and then designidg an
controller. These two designs were then used as initial conditions in a minimizationHf the
norm of the closed loop formed with the full-order plant and the reduced-order controller. The
performance on the benchmark for the resulting (reduced-dddeptimal controller is given il
column #3 of Table IV.

Two additional reduced-order controllers are used as starting pointsHg/kg optimization
below, computed in a manner similar, but ddthgcontrol designs by minimizinfT ||

The baséH, problem contains somewhat conflicting goals, since the response of the structure
and the response of the actuator cannot be simultaneously minimized. Figure 8 shows the tradeoff

between the RMS structural respor3et|, (simply the first six outputs of in thélpase

Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark 14
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Figure 8. H3" /HA<t tradeoffs between RMS structural and actuator responses for the AMD system.

plant) and the RMS actuator responBesd|, (the three actuator responges in ). (The
constraints were ignored in the minimization, but are noted in the graph where violations
occurred.) The benchmark performance of the controller that minimized the RMS actuator
response is given in column #4 of Table IV, while column #5 gives the performance of the
controller that minimized the RMS structural response while not violating RMS constraints (it did
violate the peak active mass acceleration, but it is useful to see what the performance would be
without the peak constraints). If the relative importance of these two sets of responses were
known, one could appropriately weight the structural and actuator responses in thé, base

problem; in the mixed-norm designs below, however, they are weighted equally.

Mixed HyY/H,, Design

About 100 different control designs were computed via the optimization software to study the
tradeoffs betweehl, andH,, performance. The norms of the resulting closed-loop systems are
plotted in Fig. 9; some of the designs obviously stalled at local minima, but a number of them
demonstrate quite clearly that significant robust stability and robust performance can be obtained
with nearH, performance. (Note that the Pareto curve is approximate since the points from
computed control designs are upper and right bounds on the curve, while constant lines at the

closed-loopx-norm with the full-orde,, controller and the 2-norm with ti¢, controller are

Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark 15
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Figure 9. Pareto optimal curve forH,/H,, AMD controllers.

left and lower bounds, respectively.) The two circled largernear the minimunH, have
2-norms only 0.86 and 0.015 percent above minimum, but at one thirteenth and one eighth of the
infinity norm of the reduced-ordét, optimal design. Such design points introduce significant
robustness with negligible changes in RMS outputs to white noise excitation. The third circled
large X has the opposite tradeoff, with a closed-loop infinity norm nearly that éf jhaptimal
controller, but with a RMS output over 30% less.

The benchmark performance values for several of the (near-) Pareto optimal designs are
graphed in Fig. 10, where it can be seen that the performance changes little for vast robustness
improvements. The performance on the benchmark problem for the first of the above mentioned
designs is given in column #6 of Table 1V, and its input loop gain is shown in Fig. 11; this
far exceeds the robustness requirements in the benchmark description with little or no perfor-

mance degradation. The performance of the controller resulting in the least mean squa

performance and constraint values.{ arg mKin zlli 1 IAK) + Z?: ,CA(K)) is given in column
#7 of Table 1V; this controller was one that significantly decreased the peak active mass accelera-
tion.
If the robust performance component of ithgconstraint is removed, the resulting system has
the zero controller as thé,, optimal robust controller. This complicates the characterization of

the Pareto optimal tradeoff between the robust stability sensitivity, denoted hefe) ®#th , and

Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark 16
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Figure 10. Linear performance and constraint values for (near-) Paretbl»/H,, optimal AMD controllers.

30 v -
mixed H,/H,, controller
— — — reduced-order H,, controller |7
— - — reduced-order H, controller
—— sample H, controller

. Singular Value Magnitude [dB]

1
40 50 60 70 80 90 100
Frequency [HZz]

Figure 11. Input loop gain for a reduced-orderH,/H,, optimal controller for the AMD system.

theH, RMS response. Nevertheless, a number of niikgti RS controllers were found as shown
in Fig 12. The circled largs represents a controller that provides a closed-loop RMS output only
0.28% larger than the reduced-or#igroptimal controller but 50 times as robust. The benchmark

performance of this controller is given in column #8 of Table IV.
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Figure 12.H,/HRS RMS performance and robust stability sensitivity for the AMD system.

Mixed Hy/l, Design

The HJ/l; optimization problem is more difficult than thk/H,, for several reasons. First,
computing thd; norm and its gradients with respect to controller parameters is quite expensive,
limiting the number of trials that could be tested. The second is the lack of a good starting point;
in the Ho/H,, design, it was observed that the optimization algorithm more readily relaxed
constraints than restrict them, so usingHiyeoptimal controller as the starting point worked well.
Here, the; optimal controller was unknown; several semianalytical methods, including those of
Khammash?, were applied to solve for the optimal controller, but the combination of very low
damping in some modes and high frequency actuator dynamics prevented a solution. Conse-
quently, the optimization software was modified to do unconstréjrgatimization, which facil-
itated finding a number of controllers with smaller closed-lgmrms (but with no knowledge of
the proximity to the, optimal controller).

Two different mixedH.,/l; strategies were attempted to determine if one or the other had an
impact on the peak performance and constraint measures defined above. The first lysed the
constraint with a constant weight on the input. About 40 mitkgld designs were computed and
are shown in Fig. 13. THenorm was reduced somewhat from Hyeoptimal controller, but not

nearly as significantly as th¢,, norm above. Some of these designs lowered;therm of the
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Figure 13. MixedH,/l, optimal controllers for the AMD system (no frequency dependent weight).
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curve is poorly defined at the lownorm end due to difficulties with local minima. The large
circled X is the controller that obtained the smallest closeddpaprm.

The second set of mixdd,/|; designs used a frequency-dependent input weight, that of the
Kanai-Tajimi spectrum (with the ground frequency and damping that caused the worst response
with the zero controller), to more closely model an earthquake record; to denote the frequency-
dependent weight, these designs will be caled <T. The results of the 53,/1 T designs are
plotted in Fig. 14. The Pareto curve is a little better defined here, but without an dptimal
controller to give the lower bound, it is impossible to define the curve with much certainty. The
results here are similar in that 5-10% drops in closed-lpomrm can be achieved with only
nominal sacrifice iH, performance.

Unfortunately, little correlation was found in the end between the closed;loopm and the
values of the peak performandg ,,  and const@jn values, as shown for the non-frequency-
dependenH,/l; designs in Fig. 15 over a range of th@orm. The irregularity of the lines is to
be expected, but the obvious lack of a general proportional trend betwdgmtren and the
performance/constraint values shows that {im®rm of the closed-loop cannot be used to predict

peak responses to the known earthquake records.
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10

The lack of correlation was rather surprising at first, but, in retrospect, it makes some sense.
Thel; norm is the worst-case peak output over a very wide class of input excitations, those that are

magnitude bounded.€¢., those signals i), which includes persistent signals that have DC

Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark 20



offsets and long-term non-decaying behavior. The earthquake records used to evaluate the peak
response of the closed-loop system for the benchmark, however, are finite in duration and more
properly belong to the class of energy bounded sighglsThe worst case output magnitude over

all possible energy-bounded inputs is governed byltheorm of the system. Thus, thie norm

should be a better measure of peak output magnitudes thanntbam for the excitations of

interest here.

CONTROLLER DESIGNS: ACTIVE TENDON SYSTEM

Performance with Zero Controller
The performance of the active tendon system with the zero controller is given in column #9 of
Table IV. This system has significantly tighter constraints, primarily on the actuator command

voltageC, and actuator forcg,

Base H (LQG) Design

The analysis parallels that of the AMD system. The lbgswradeoff between performance
and control effort is shown in Fig. 16. The control effort welg\ has a very narrow admissible
range since setting it to larger than 1.874 results in systems that violate the constraint on the

107

uuuuuuu J, (drifts)
—— J, (accelerations)
— — — J; (actuator disp)
1 o —-—-J, (actuator veloc)
10 e e Js (actuator force) []
T e LLEN —— €, (control)
°°°°°°°°°°° SN S - = = C, (actuator force)
SO0 S - = C; (actuator disp)

Performance and Constraint values
|
|
|
|
|
]
/

10
H, control weight W,

Figure 16. Control weight tradeoffs for the baseH, controller in the TEN system.
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actuator force ¢,>1 ), and fow,, <0.887 , the resulting controller is unstable. Thus, the
weight chosen here is again unity.

Several initialH, controllers, first full-order, then reduced order, were computed as described
for the AMD system above; the resulting benchmark performance data for the best reduced-order
H, design is given in column #10 of Table IV. It must be noted that the actuator veloci
reached its peak in a very different location(iy, ;) space than other RMS performance and
constraint values. A reduced-ordgy, optimal controller were also used as initial conditions for

mixed optimization.

Mixed HY/H,, Design
About 100 mixedH,/H,, designs were computed to study the performance and robustness

tradeoffs of the TEN system. The resulting norms are shown in Fig. 17; as was previously noted,
the optimization algorithm does get stuck in local minima for many of these designs, but some are
very good at improving robustness with little loss of khebenefits. In fact, thél, optimal
controllers have terrible robustness characteristics for the active tendon system. The circled large
X’s are controllers that generate closed-loop plants with 2-norms 1.2 and 0.1 percent lar

the H, optimal controller, but with infinity norms about 1/85@and 1/178' that of theH,
controller. The input loop gains for these two designs are shown in Fig. 18 and the performance

1.5

—— approx. H,/H,, Pareto curve
locally optimal H,/H,, 4
Pareto optimal H,/H,,
full-order H, and H,,
reduced-order H, and H,, 7
zero controller

131
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11r
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Figure 17. Pareto optimal curve forH,/H,, TEN controllers.
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Figure 18. Input loop gain for reduced-orderH,/H,, optimal controller for the TEN system.

evaluation of the second is given in column #11 of Table IV. The opiti;ebntroller results in

a fair sensitivity to high-frequency modelling errors that could, at worst, cause instability if the the
truncated high-frequency modes dominate under some loading conditions. TheH3lidgd
designs, however, while retaining most of the RMS performance d¢ffltkesign, also capture

some of the robustness of tHg optimal controller.

Mixed Hy/l, Design
Due to the computational intensity and its inability to suppress peak responses of the AMD

system, no mixeé#li,/l; optimization was done on the active tendon system.

OBSERVATIONS AND CONCLUDING REMARKS

The mixedH,/H,, optimal control design was able to provide controllers with significantly greater
robustness characteristics at little cost to RMS and peak performance measures defined in the
benchmark. This was especially noticeable in the active tendon system, where the infinity-norms
of theH, optimal controllers were quite large. The robustness was a relatively minor point in the
benchmark definition, but it is a critical safety issue for actively-controlled buildings and must be

included in an evaluation of controller design.
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The performance of the controllers mentioned herein is generally better than the sample
controller provided with the benchmark, though the definition of “better” is, of course, rather
application specific and will vary with the requirements of the structure. The 50 “best” AMD
results here averaged about 20% less than the sample controller (where all 10 performance
measures and the 6 weighted constraints are averaged together), with the best being 289

The computer resources required for the multiobjective optimizations performed for this study
vary significantly depending on what objective and constraint functions are used; nbmms
were routinely significantly more computationally intensive than the others, up to the better part of
a day of CPU time on an HP9000/780 workstation. Other mixed-norm designs, such as the RMS
structural/actuator response tradeoffs, generally took only a few minutes on the same platform. A
full Simulink” simulation (up to 300 seconds) of one Kanai-Tajimi spectrum for one controller
took about 105 minutes, so the evaluation was at least as expensive as the design process.

It was observed in the process of dokhgH,, mixed designs that the optimization algorithm
more readily relaxed constraints than restricted them, being less likely to get stuck at local
minima. For example, in and,/H,, problem, starting with aHl,, optimal controller and relaxing
the constraint often results in solutions that are closer to the Pareto optimal curve than starting
with a controller that is closer td, optimal and searching for a more constraidgdvalue.

It may be noted that thd,, portion of the problem tends toward the conservative side since the
overall uncertainty is structured due to the two separate uncertainty blocks. Walker andlﬁzidgely
have done some work in mixét}/ 1 optimization, so the above development could replace the
constraint with gu constraint to more closely model the true system uncertainty.

Investigation intd, optimization in the mixed-norm context for this benchmark proved inade-
guate for reducing peak responses and accommodating peak hardware constraints. Since an earth-
quake is generally an energy-bounded excitation (it dies out after a short tinhgpydh@ might
not be the best induced norm to use since that assumes the input to be in too broad a class of
signals [,). (In fact, it may be argued that an earthquake excitationjsan even narrower class
of signals whosé; norm is bounded.) ThHE, norm, already included for minimizing RMS
response, has a bigger impact on peak outputs to the real earthquake records than did controllers
with small correspondinly norms.

This study demonstrates the usefulness of mixed-norm optimization to allow the control
designer to dramatically improve robustness while retaining the performaHgd-QIG optimal

controllers. Understanding these tradeoffs is essential to the control design process.
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Table IV. Performance and constraints of the AMD and TEN systems with various controllers.
The worst caseu;,{g) locations were found for each RMS value, using 300 (AMD) or 750 (TEN) seconds of
response to a Kanai-Tajimi excitation, and are given below the correspdratidg values , is in rads/sec).

Sys:
IName|

Note:

1
AMD

Zero

2
AMD
Sampléd,

min. accel

3
AMD

BaseH,

.min. struct

responses & actuator,
responses responses responses robustnes

4
AMD
HS\CI

min.
actuator

5
AMD
Hgtl’

min.
structural

6
AMD

stability/
perform.

7
AMD

sq. perf. &
5 cnstr. vals|

8
AMD

HolHo, #AH,/H,, #2 Ho/HRS

least mean stability

robustnes

9
TEN ]

Zero

10

'EN TEN

Ban'lz

min. struct
& actuator|

responses robustnes

11

Ho/Hes

stability/
perform.
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=37.0076
{4=0.30000

=37.9657
{4=0.30000

w=37.2734
{4=0.30000

=38.6359
{4=0.30000

w=37.8947
{4=0.30000

wy=37.2931
{4=0.30000

=38.1447
{4=0.30000

1.956081

=14.5386
{4=0.30000

0.7320250.73207¢

w=14.2808
{4=0.30000

wy=14.2813
{4=0.30000

0.0315220.2233870.1903390.1238160.4683130.1765910.1741470.1892185

y=37.2522
{4=0.30000

@y=37.0152
{4=0.30000

y=37.2366
{;=0.30000

y=37.3355
{4=0.30000

@y=36.3575
{4=0.30000

y=37.3585
{;=0.30000

y=37.2862
{4=0.30000

wy=37.2743
{4=0.30000

0.020219

wy=14.5400
£4=0.30000

0.0608130.060731

wy=14.7564
{4=0.30000

wy=14.7542
{4=0.30000

0

0.17516% 0.196315 0.1160

33 0.514

544 0.190882 0.145384 0.2

00995

0 0.

047226 (951560

0.905539 0.804580 0.7057

85 0.431

3B.B245880.722743 0.574621 0.7742

5B.925718

0.987402 0.963268

0.027950 0.224130 0.2256

63 0.131725 0.582699 0.216185 0.1

81141 O.

231494 0

020030

0.120719 IO. 122831

The controllers mentioned herein are available upon request.

The authors would like to acknowledge and thank Prof. D.B. Ridgely and his colleagues for making dloe v
toolbox available for our use.
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