205 N. Mathews Ave.
Urbana, IL 61820
Ph: (217)213-9068
Email: cjfang@outlook.com
Website: https://www.researchgate.net/profile/Cj_Fang
2) The centered core is modeled using a Timoshenko beam and a Kelvin model of the dampers is considered.
3) Optimization base on different objective functions are compared, and the Pareto optimal front makes the tradeoffs between competing objectives.
2) GRS is combined with dynamic stiffness method in frequency domain to study the dynamic characteristic and time history response.
3) GRS is blended with FEM in time domain to verify the efficacy of the proposed method.
4) The proposed method provides parametric analysis with respect to the position of outriggers, damping, and core-to-column and core-to-outrigger stiffness ratio.
2) By combining the complex rotational stiffness into a dynamic stiffness matrix, the dynamic characteristics of a building with multiple outriggers can be derived
3) An in-depth parametric study is conducted by the proposed method to evaluate a building with outriggers with respect to the stiffness ratio of the core to perimeter columns, position of damped outriggers, and damping coefficient of linearly viscous dampers.
4) The investigation shows that the modal damping is significantly influenced by the ratio of core-to-column stiffness, as well as is more sensitive to the damping coefficient of dampers than to the position of damped outriggers.
2) The combination method of pseudo excitation and high precise integration scheme is also adopted to study time dependent response variance.
3) The probability density evolution method is adapted to investigate the dynamic reliability.
4) Results show that the presented system is able to offer more precise control effectiveness and enhance the safety of high-rise building
2) Shaking table tests of the building with damped outriggers is carried out for a set of earthquake records with various PGAs, and the test results have been compared systematically with the case of the fixed outrigger.
3) A 3D finite element models, representing the structure with damped and fixed outrigger respectively, have been developed in SAP2000.
4) The results of shaking table test of the novel energy-dissipation system show the damped outrigger system can achieve a better performance than the fixed outrigger structure in reducing the seismic responses of the structure. .