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ABSTRACT

In recent years, numerous approaches have been proposed for detecting damage
in structures, in which the flexibility-based Damage Locating Vector (DLV) method
is one of the promising techniques. By computing a set of load vectors from the
change of the flexibility matrix before and after damage and then applying them as
static forces to analytical model for static computation, the DLV method is able to
locate damage in structures. The main purpose of this paper is to experimentally
verify this method. Following a brief overview of the DLV method and construction
of the flexibility matrix from experimental data, the experimental setup is described.
The test structure is a 15 ft long three-dimensional truss structure. To simulate
damage in the structure, the original truss member is replaced by one with reduced
stiffness. Results show that the DLV method can successfully detect the damage
using limited number of sensors and truncated modes.

INTRODUCTION

The condition of civil infrastructure is in a the state of decline due to daily use,
corrosion, natural hazards, etc., and thus monitoring its condition becomes a very
important issue. By continuously monitoring the condition of the structure,
necessary measures can be carried out at an early stage, which could substantially
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reduce the maintenance costs and reduce the likelihood of future collapse of the
structure.

The first implementations of structural health monitoring (SHM) appear to have
taken place in offshore structures and bridges. One class of damage identification
methods employed for SHM measures the change in frequencies to determine
structural damage. Vandiver [1] examined the change in resonant frequencies due to
the damage in structural elements. Cha and Tuck-lee [2] examined the change in
frequency response data and used this information for structural parameter updating.
Changes in a structure’s mode shapes have also been utilized. West [3] was perhaps
the first to systematically use mode shape information for localization of structural
damage without employing a prior finite element model. Another such technique
takes advantage of the change in the flexibility matrix. Pandey and Biswas [4][5]
presented a damage detection and localization method based on the flexibility
changes in the structure. Recently, Bernal [6] proposed a promising new flexibility-
based method, the Damage Locating Vector (DLV) method, for damage localization.

In this paper, following a brief overview of the DLV method, an approach to
construct the flexibility matrix with inputs measured is presented. The DLV method
is then verified through test of a 15 ft long, three-dimensional truss structure.
Experimental results for two damage cases are presented.

PROBLEM FORMULATION AND SOLUTION

Health monitoring methods based on the flexibility matrix have recently been
shown to be quite promising. Because an inverse relationship exists between the
flexibility matrix and the square of the modal frequencies, the flexibility matrix is
not sensitive to higher frequency modes. This unique characteristic allows the use of
a small number of truncated modes to construct a reasonably accurate representation
of the flexibility matrix.

The DLV Method

Bernal [6] proposed a flexibility-based damage localization method, the DLV
method. This technique is based upon the determination of a special set of vectors,
the so-called damage locating vectors (DLVs). The DLVs have the property that
when they are applied to the structure as static forces at the sensor locations, no
stress will be induced in the damaged elements. This unique characteristic can be
employed to localize structural damage.

First, let’s look at how to obtain the DLVs. For a linear structure, the flexibility
matrices at sensor locations can be constructed from measured data before and after
damage and denoted as  and , respectively. Assume that we have a set of
linear-independent load vectors , which satisfy the following relationship

or (1)

This equation implies that the load vectors  produce the same displacements at the
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sensor locations before and after damage. From the definition, the DLVs are seen to
also satisfy Eq. (1); that is, because the DLVs induce no stress in the damaged
elements, the damage of those elements does not affect the displacements at the
sensor locations. Therefore, the DLVs are indeed the vectors in . 

To calculate , the singular value decomposition (SVD) can be used. The SVD
of the flexibility difference matrix  leads to

(2)

or, equivalently

        and        (3)

Eqs. (1) and (3) indicate that , i.e., DLVs can be obtained from the SVD of
the difference matrix .

Each of the DLVs is then applied to the undamaged analytical model of the
structure, and the stress in each structural element is calculated. If an element has a
zero normalized accumulative stress , then this element is a possible candidate of
damage. The normalized accumulative stress for the jth element is defined as

       in which       (4)

in which  = stress in the jth element induced by the ith DLV;  = cumulative
stress in the jth element. In practice,  induced by DLVs in the damaged elements
may not be exactly zero due to noise and uncertainties. Therefore, a small value of

 indicates a possible damage location.

Constructing Flexibility Matrix Using Limited Sensor Information

As shown in the previous section, the flexibility matrix needs to be constructed
from the measurement data to implement the DLV method. When the input is
measured, and there is at least one co-located sensor and actuator pair, the
experimental data can be used to construct the flexibility matrix and no additional
information is required [7]. 

First, the state space representation of the structure can be obtained using various
realization algorithms, such as Eigensystem Realization Algorithm (ERA) [8]. The
state space representation is given by

(5)
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where x = state vector; u = input vector; and y = output vector. Taking the Fourier
Transform of Eq. (5) yields the following relationship between the input and output

(6)

Based on sensors used in the experiment, the displacement vector  can then
be expressed as

(7)

where p = 0, 1, and 2 when outputs are displacement, velocity, and acceleration,
respectively. If we note that the flexibility matrix relates the inputs to the outputs at

, the flexibility matrix can be obtained as

(8)

(9)

Based on this derivation, note that each column of  is associated with each input
and each row is associated with a sensor location. We denote the flexibility matrix at
sensor locations as ; columns of  then correspond to inputs applied at sensor
locations. So, if there are any inputs located at the sensor locations, the associated
columns in matrices  and  will be the same. Define two Boolean matrices 
and  which pick out these columns from  and , respectively. We have

       and       (10)

Expressing the flexibility  and the system matrix  in terms of their eigenvalues
and eigenvectors gives

(11)

where  = mode shapes at the measured degree of freedoms (DOFs);  = matrix
of mass normalized index;  and  = eigenvalue and eigenvector matrices of the
system matrix , respectively. It is important to note from Eq. (11) that, for classical
damping, a mode-by-mode equality can be established. Eq. (11) can then be written
as

(12)
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In Eq. (12), only , the diagonal term of , is unknown. After  is calculated – i.e.,
the diagonal matrix  is obtained – the flexibility matrix at the sensor locations can
be constructed from the relationship 

(13)

EXPERIMENTAL VERIFICATION

The DLV method is experimentally verified by using a 15 ft long, three-
dimensional truss structure, which is shown as Fig. 1. In this section, the
experimental setup is first described and the experimental results are then presented.

Experimental Setup

The three-dimensional truss structure was tested at the Smart Structures
Technology Laboratory (SSTL) of the University of Illinois at Urbana-Champaign
(http://cee.uiuc.edu/sstl/). The length of each bay of the truss is 1.3 ft on each side.
The truss sits on two rigid supports. One end of the truss is pinned to the support, and
the other is roller-supported. The pinned end can rotate freely with all three
translations restricted. The roller end can move in the longitudinal direction and
rotation about the longitudinal axis is not allowed.

The truss members are steel tubes with inner diameter of 0.428 in and outer
diameter of 0.612 in. The joints of the elements are specially designed so that the
truss member can be easily removed and replaced to simulate damage without
dissembling the whole structure. A detailed picture of the joint is shown in Fig. 1. As
can be seen, the truss member can be removed by unscrewing the collar towards the
joint. On the other hand, if the collar is screwed away from the joint, this member
can be easily installed.
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Figure 1.  Fifteen-feet truss structure
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The truss is excited vertically by a permanent magnetic shaker that can generate
a maximum force of 20 lbs with a dynamic performance ranging from 1 Hz to 8000
Hz. The shaker is connected to the bottom of the outer panel using a stinger. A load
cell is installed between the stinger and the bottom of the joint to monitor and
measure the input to the structure.

Accelerometers are attached to the truss joints with magnetic bases. Siglab is
used to drive the shaker and measure the accelerations and the excitation. Two four-
channel 20-42 Siglab box are synchronized to measure eight channel of data
simultaneously.

Using limited sensors to monitor all members in a complex structure might be
difficult. In this experimental verification, the 53 elements in the outer panel (shown
in Fig. 2), which are elements 14 through 25 and 79 through 119, are monitored
using 13 accelerometers, which are installed vertically at the joints of the lower
chord. Due to the fact that only 8 channels are available, the 13 accelerations are
measured in two sequential experiments. In this way, mode shapes at these 13 DOFs
can still be established. The shaker is connected to one of the joints at the bottom, so
there is one co-located sensor and actuator pair. 

Experimental Results

There are two damage cases studied in this experimental verification. One is a
40% stiffness reduction in a longitudinal element and the other is a 40% stiffness
reduction in a vertical element.

CASE 1 STUDY

In this case, longitudinal element 82 in the lower chord is replaced by a tube with
40% stiffness reduction. 

The transfer functions are measured first. Typical experimentally-measured
transfer functions are shown in Fig. 3. The modal parameters are then obtained from
these transfer functions before and after damage using the ERA. Here, the first 6
dominant natural frequencies, which are numbered in Fig. 3, are identified. The

Figure 2.  Sketch of the outer vertical panel (elements 
14 through 25 and 79 through 119)



corresponding mode shapes are also extracted as shown in Fig. 4. As noted, there is
very little change in the frequencies and mode shapes. It is obvious that direct
comparison between the frequencies and mode shapes to detect damage is difficult if
not possible in this case. Herein, the DLV method is employed to detect the damage. 

Once the modal parameters before and after damaged are obtained, the flexibility
matrix at the sensor locations can be constructed following the procedure described
above. The DLVs are then computed from the difference matrix  using Eqs. (2)
and (3), and applied as vertical loads at the sensor locations to the undamaged
analytical model for static computation. The normalized accumulative stress can
then be obtained and employed to locate the damage in the structure.

The results of the normalized accumulative stress is shown in Fig 5. As can be
seen, the normalized accumulative stress for element 82 is considerably smaller than
others elements. However, element 17, which is not a damaged element, also has a

Figure 3.  Experimentally measured transfer functions
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small value of normalized accumulative stress. Therefore, element 82 can only be
identified as a potentially damaged element.

CASE 2 STUDY

In this case, the vertical element, element 112, is replaced by a tube with 40%
stiffness reduction instead of a longitudinal element as presented in CASE 1. Here
again, the DLV method successfully detected this element as a possible damage
element. The results are shown in Fig. 6. As illustrated, the damaged element,
element 112, is correctly identified among the candidates of damage locations.

Figure 5.  Normalized accumulative stress for the case when 
element 82 is damaged

Figure 6.  Normalized accumulative stress for the case when 
element 112 is damaged



CONCLUSIONS

The DLV method has been successfully verified using experimental data. The
experimental results show that the change of modal properties subjected to a 40%
stiffness reduction of single member is very small. Direct comparison of the modal
properties to detect damage is very difficult if it is not impossible for this truss.
Techniques which are more sensitive to structural damage is highly desirable. By
using a flexibility-based DLV method, damage in this truss can be correctly located
using only limited number of sensors and truncated modes.
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