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SUMMARY

This paper presents a semiactive control strategy for the seismic protection of the phase II smart base
isolated benchmark building subjected to near-fault earthquakes. Magnetorheological (MR) fluid dampers
controlled by an optimal direct output feedback control algorithm with a voltage generator are used as
semiactive control devices. The benchmark building is an eight-story base isolated building, and the
superstructure is considered to be a linear elastic system with lateral–torsional behavior. To reduce the
energy transmitted to the structure from the ground, a combination of linear and nonlinear bearings is
installed at the base of the structure. It is difficult to design the controller for this benchmark problem
because of the nonlinear behavior of the isolation members. Linear control theory is frequently applied to
nonlinear structures because there are no appropriate and well-defined control theories that can consider
general types of nonlinearities. Therefore, to improve control performance, the nonlinearities of the
isolation members are considered indirectly with the linear control theory during the design process of the
controllers for the MR dampers. Numerical simulation results under various earthquake inputs show that
the proposed control strategy is effective in reducing the responses of the isolation members as well as the
superstructure. Therefore, the proposed control system could be used as an improved control strategy for
base isolated buildings subjected to near-fault earthquakes. Copyright r 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many control strategies have been proposed and implemented over the last few of decades for
the purpose of protecting structures against natural hazards such as severe earthquakes and
strong winds. One of the most widely implemented and accepted control strategies is seismic
isolation systems [1,2]. Essentially, this technique consists of the installation of mechanisms that
decouple the structure and its components from potentially damaging earthquake-induced
ground or support motions. The phase II smart base isolated benchmark building also uses a
combination of linear and nonlinear bearings to protect the building from near-fault
earthquakes. In base isolation systems, nonlinear devices such as lead rubber bearings (LRBs),
friction pendulum and high-damping rubber bearings are often used. The main advantage of
these types of bearings is that a restoring force and an adequate damping capacity can be
obtained in one device. However, because the dynamic characteristics of these bearings are
highly nonlinear, the vibration reduction of the bearings is not optimal for a wide range of input
ground motion intensities, particularly strong impulsive ground motions generated at near-
source locations [3,4]. Furthermore, these seismic isolation systems allow large deformations of
the bearings to shift the natural frequency of the structure away from the frequency range in
which the earthquake energy is concentrated. These large deformations in the isolated structure
could cause many critical problems such as excessive drift in buildings and collapse as well as
pounding of decks in bridges. Therefore, recent revisions to the Uniform Building Code [4]
mandate the accommodation of larger base displacements and the consideration of a stronger
maximum credible earthquake, indirectly suggesting the need for supplemental damping devices
[5]. To address the limitations of passive-type seismic isolation systems, an improved control
strategy combined with semiactive and/or active control devices can be used. This system could
alleviate some of the restrictions and limitations that exist when each system is acting
independently.

In this study, magnetorheological (MR) dampers are used as semiactive control devices and
an optimal direct output feedback control algorithm is used as the primary control scheme to
calculate the required control force for the MR dampers. Moerder and Calise [6] proposed
optimal output feedback control while considering convergence of the algorithm. As an
alternative, direct output feedback control, which neglects the design of the Kalman, has been
proposed by some researchers [7,8]. The secondary control scheme generates the command
voltage to the MR fluid dampers based on an inverse dynamic model of the MR dampers.
During the controller design, two different nonlinear models for the frictional pendulum
bearings are considered. First, a simple bilinear model that can capture the main characteristics
of the friction pendulum bearings is used. Four different controllers are designed based on the
pre- and post-yield stiffness of the friction pendulum in both the x- and y-direction. Depending
on the current status of the friction pendulum, one of the four controllers will be applied at any
given time step during an earthquake event. The model provided in the problem definition paper
[9] is used as the second model of the frictional pendulum. The re-centering stiffness of the
frictional pendulum is used to obtain the linear model of the benchmark structure, and this
linear model is used during the controller design. However, the compensated force coming from
the nonlinear terms of the frictional bearings is added to the optimal control force.

Following a summary of the benchmark problem statement, a control strategy using
semiactive devices and the results of numerical simulations under various earthquake excitations
are presented to demonstrate the efficacy of the proposed control strategy.
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2. A BRIEF SUMMARY OF THE BENCHMARK PROBLEM

In this section, a brief review of the phase II smart base isolated benchmark building is given. A
detailed description of the benchmark control problem for the base isolated building including
the mathematical model, input excitations, evaluation criteria and three-dimensional nonlinear
dynamic analysis program using MATLABs [10] can be found in the problem definition paper
[9]. For the linear base isolated structure, many researchers have proposed different control
strategies and have reported their results in the earlier published special issue of the phase I
smart base isolated benchmark problem [11]. For the nonlinear cases in the benchmark
problem, some control strategies have been proposed considering bilinear and nonlinear
hysteretic models for the isolation system [12,13].

The benchmark structure is a base isolated eight-story, steel-braced framed building that is
82.4-m long and 54.3-m wide as shown in Figure 1.

The superstructure is modeled as a three-dimensional linear elastic system using three degrees
of freedom (DOF) per floor at the center of mass so that the superstructure consists of 24 DOFs.
All 24 modes in the fixed-base structure are used in modeling the superstructure, and the
damping ratio is assumed to be 5% in all fixed-base modes. The computed first natural periods

Figure 1. Phase II smart base isolated benchmark building [9].
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of the fixed-base modes are 0.78, 0.89 and 0.15 s in the North–South, East–West directions and
in torsion, respectively. The base is also modeled with three DOFs located at the center of mass
of the base so that the whole base isolated benchmark building consists of 27 DOFs.

To decouple the structure from potentially damaging earthquake-induced ground or support
motions and to enhance the structural safety, 61 nonlinear isolation bearings (i.e. friction
pendulum or LRBs) and 31 linear elastomeric bearings are installed at the base of structure as
shown in Figure 1. These isolation devices are elastic, viscous, hysteretic elements for bilinear
LRBs and hysteretic elements for the friction pendulum bearings. The biaxial hysteretic
behavior of LRBs and frictional bearings is modeled using the biaxial interaction equation of
the Bouc–Wen model [14]. In addition, a total of 16 MR dampers are also installed with the
isolation system for the semiactive system. The resultant control force from the isolator and the
additional control devices are transferred to the center of mass of the base and may cause
rotational effects.

To evaluate the effectiveness of the control system, evaluation criteria, J1–J9, have been
presented in the problem definition paper [9]. The first five evaluation criteria, J1–J5, are related
to the peak responses, where J1 5 peak base shear, J2 5 peak structure shear, J3 5 peak base
displacement, J4 5 peak interstory drift and J5 5 peak floor acceleration. These evaluation
criteria are normalized with respect to the uncontrolled case (i.e. there is no force feedback to
the structure and the additional control devices are disconnected from the structural system). J6
measures the maximum forces developed in the control device and is normalized by the peak
base shear. J7 and J8 are the root mean-square (RMS) values of displacement and base
acceleration, respectively. Finally, the energy dissipated by control devices, J9, is calculated as a
percentage of the input excitation energy.

3. SEMIACTIVE CONTROL SYSTEM USING MR DAMPERS

3.1. Control devices and sensors

3.1.1. Nonlinear models for frictional bearings. In this study, two different nonlinear models for
the frictional bearings are considered to generate the controller. The originally nonlinear model
for the isolated structural system considers the torsional effect so that each bearing force in the
same translational direction is different from the others. Based on the original design for
frictional bearings, the mathematical form of this type of bearings is formulated by a nonlinear
hysteretic model multiplied to the friction force plus a linear re-centering stiffness. In general, a
sliding model can be used in this type of frictional bearings and therefore the first estimated
model adopts the bilinear model [12] to approach the total bearing forces in either the x- or y-
direction. The approximate model translates all bearing forces to the center of mass and neglects
the torsional response of all bearings. In other words, all frictional bearings are simplified into
two bilinear models in both the x- and y-direction. Moreover, the bilinear model consists of
three parameters, pre-yield stiffness, yield displacement and a factor of stiffness reduction for
the post-yield stiffness. All parameters are obtained from the uncontrolled response of a single
frictional bearing using a nonlinear least-squares method. The model is then fit using the
original structural responses without control devices, as shown in Figures 2 and 3. The forces
associated with the simplified model of the single frictional bearing are transformed to the center
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of mass; the resulting fit of the displacement and velocity responses is good, although the
hysteretic behavior cannot represent the exact force because of the torsional effect.
The second nonlinear model estimates the nonlinear bearing by utilizing the Bouc–Wen model
of the form provided in the benchmark control problem. This model emphasizes a more precise
estimate of the bearing forces. Therefore, in the controller design, the nonlinear bearing forces
need to be calculated at each time step by using the reduced-order state space system. However,
the parameters of the bilinear model and the Bouc–Wen model need to be found in advance.
The off-line regression method adopts least-squares optimization using the responses of the
displacement and the velocity as the input data and the responses of the force as the output data
from the uncontrolled case. After regression, the approximate model using the Bouc–Wen
hysteretic model is shown in Figures 4 and 5, which are compared with the original structural
responses. By comparing the two nonlinear models, the Bouc–Wen hysteretic model is shown to
describe the frictional bearing behavior better than the bilinear model, but requires significant

Figure 2. Comparison of the responses of displacement and velocity between the original nonlinear
bearings and the approximate bilinear model at the center of mass.
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computational resources. Once the nonlinear model for the frictional bearings is determined,
model-based control strategies can be designed.

3.1.2. Dynamic and inverse dynamic models for MR damper. An appropriate numerical model
that can describe the dynamic behavior of the MR damper is required for the controller design
employed. This study herein adopts the Bouc–Wen model [14] for the MR dampers as indicated
in the mechanical model shown in Figure 6.
The MR damper model [15] combines the mass and the damping with the Bouc–Wen hysteretic
loop inside without considering the spring stiffness. The complete mathematical form is detailed
as follows:

fdev ¼ azdev þ cdevð _xbÞ _xb þmdev €xb þ fdev;0 ð1Þ

cdevð _xbÞ ¼ a3 _x
3
b þ a2 _x

2
b þ a1 _xb þ a0 ð2Þ

_zdev ¼ �gdevj _xbjzdevjzdevj
n�1 � bdev _xbjzdevj

n þ Adev _xb ð3Þ

Figure 3. Comparison of the responses of force and hysteretic behavior between the original nonlinear
bearings and the approximate bilinear model at the center of mass.
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Here, zdev is the evolutionary variable for the historical dependence of the response from the
Bouc–Wen hysteretic model. In general, some researchers suggest that a first-order filter should
be added to accommodate the time required to reach the rheological equilibrium and in driving
the electromagnet for modeling the MR dampers. Nevertheless, this MR damper model that is
used in this study neglects the effect on the saturation of the MR fluid. A least-squares
regression method of the MR damper performance tests is used to obtain all coefficients of the
MR damper model.

All coefficients of this model depend upon the voltage level, and the driving voltage in this
experiment ranges from 0 to 1.2V. A polynomial function is formed in order to observe the
trend of all coefficients related to voltage levels. After using the nonlinear least-squares method
to fit all the coefficients as a function of voltage, the proposed modified model was validated
using the experimental data of the MR dampers tested in the National Center for Research on
Earthquake Engineering (NCREE). The MR dampers used in this test have a force capacity of

Figure 4. Comparison of the responses of displacement and velocity between the original nonlinear
bearings and the approximate Bouc–Wen model at the center of mass.
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20 kN with a maximum stroke and a relative velocity of approximately 4 cm and 45 cm/s,
respectively [16]. The comparison between experiment and simulation is shown in Figure 7. The
test of the MR damper performance is done employing a random stroke and a random voltage
with inputs and responses measured.

The coefficients of the MR damper model are adjusted so that it is adequate for the
benchmark structure. The output force is amplified 50 times the original control force, and the
capacity of the MR damper on the relative responses of velocity and acceleration is
appropriately adjusted, where both of them are divided by 3.5. The adjustment implies that
the respective capacity has been 3.5 times of original values.

The MR dampers are driven by electrical power that results in a damping force. Owing to the
complexity of the MR damper, it is too difficult to estimate an input voltage to the MR damper
given a required force. A better way to approach the suitable voltage command with respect to
the required force is to use a simplified forward model and to clip the voltage range into

Figure 5. Comparison of the responses of force and hysteretic behavior between the original nonlinear
bearings and the approximate Bouc–Wen model at the center of mass.
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different levels [17], as shown in Figure 8. Here, the voltage command ranges from 0 to 1.2V
and is divided into 121 levels of equal 0.01V intervals. Finally, the required voltage with respect
to the required force can be generated through the error minimization of the required force and
the estimated force from the simplified model. If the method also adopts the Bouc–Wen model
as the forward model, computing the required voltage command would be computationally
inefficient. Therefore, a simplified model is proposed to efficiently compute the voltage
command and is given as

f ð _xbÞ ¼ _xbb1e
�ðb2 j _xb jÞ ð4Þ

in which the two coefficients, b1 and b2, are polynomial functions that depend on voltage.
Figure 9 represents the illustration of the simplified model that compares with the experimental
data. Although this method is not very precise near the origin of the force–velocity plot, it is
sufficient in achieving adequate semiactive control effectiveness.

3.1.3. Location of sensors. The control strategy in this case measures the responses of each
nonlinear bearing and then generates a feedback control gain with respect to the measurement.
The sensors that are selected in the controller design measure the displacement and the velocity
of the three DOFs at the center of mass of the base. Practically, it is difficult to measure the
responses at the center of mass but these responses can be estimated if there are a few
translational sensors placed at locations away from the center of mass (i.e. at the corners or
bearings of the structure). Owing to the rigid plate assumption of the floors and the base, the
torsional response can be estimated by computing the relationship of the translation and
torsional responses. In addition to the measurements at the center of mass of the base,
measurements are taken of the relative displacement and velocity at the frictional bearings. In

Figure 6. Schematic illustration of the MR damper model.
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total, there are three displacement sensors at the center of mass of the base, three velocity
sensors at the same location and 16 sets of relative displacement and velocity sensors at the 8
control device locations if the controller uses the Bouc–Wen model for the reduced-order
control system. Each set of sensors for the control devices measures the response in the two
principally translational directions. Although the controller combined with the Bouc–Wen

Figure 7. Validation of the model for the MR dampers using the experimentally random voltage and
random stroke test.

Figure 8. A flowchart of voltage generation for the MR dampers.
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model for the frictional bearings needs the information from each bearing, those responses can
be obtained using a transformation matrix based on the rigid plate assumption.

3.2. Control algorithm

3.2.1. Reduced-order model. Using a full model to derive the control force can sufficiently
express the structural behavior. However, for nonlinear models, the full-order control algorithm
would increase the computational resource. Therefore, a reduced-order model is adopted to
determine an appropriate control strategy. The most common method to reduce the order of the
system matrices for a linear structure is to adopt the modal approach using the major modes of
the linear structure to estimate the structural responses. The reduced-order equation of motion
can be expressed as

M
_
Z̈þ C

_
_Zþ K

_
Z ¼ �UTMRð €Ug þ €UbÞ ð5Þ

U ¼ UZ; M
_
¼ UTMU; C

_
¼ UTCU; K

_
¼ UTKU ð6Þ

Figure 9. Illustration of the simplified model for the MR dampers to generate the voltage command.
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where F is the modal matrix related to the selected mode shapes of the superstructure.
In this case, only the first three modes are selected, which allows inclusion of modes with
natural periods that are larger than 0.5 s. The first three modes correspond to the first x-
translational, first y-translational and first z-rotational modes. To avoid a singular matrix
occurring in the computation of the structural responses, the reduced-order mass matrix is
multiplied by the original total lumped mass from the eighth story to the first story in each
diagonal term. Similarly, the damping matrix, the stiffness matrix and the load influence matrix
are also needed to make similar modifications. Finally, the state space equation can be
reformulated as

_XrðtÞ ¼ ArXrðtÞ þ BrurðtÞ þ E €UgðtÞ ð7Þ

Ar ¼
0 I

� �M
�1
r
�Kr � �M

�1
r
�Cr

" #
; Br ¼

0

I

" #
; Er ¼

0

�
UTMR

RTUMUTRþMb

( )2
64

3
75 ð8Þ

�Mr ¼
M
_

UTMR

RTMU RTUMUTRþMb

2
4

3
5; �Cr ¼

C
_

0

0 Cb

2
4

3
5 ð9Þ

�Kr ¼
K
_

0

0 Kb

2
4

3
5; ur ¼ fest;b þ fdevice; Xr ¼ ½Z

T
X

T

b
_Z
T _X

T

b �
T

ð10Þ

in which Ar, Br and Er are system matrices with 12 states and fest,b indicates the resulting
estimated nonlinear force from the total bearing force in the x- and y-direction. To simplify the
control strategy for the nonlinear approach case, two types of nonlinear models have been
generated to estimate the bearing force in this study based on the relationship of the force versus
the relative displacement at the center of mass as explained in Section 3.1.

3.2.2. Control algorithm combined with two nonlinear bearing models. To develop the
control strategy for the semiactive control devices, an optimal direct output feedback
control algorithm [6–8] is employed. Generally, model-based control algorithms always utilize
the full- or reduced-order structural system to obtain a control gain or several control gains
related to the real state vector. The full-state direct feedback method cannot be realized in real
structures because of the limitation in monitoring all the states of the structure. Therefore, most
of model-based control algorithms depend on a reduced-order model to estimate the full-state
vector. In this case, instead of estimating the full-state vector, the required control force is
calculated using the output measurements directly. First, the reduced-order state space
equations are formulated using the previously discussed methods and the measurement output is
given as

YmðtÞ ¼ CrXrðtÞ ð11Þ
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Here, Cr is the measurement matrix corresponding to the sensor location. In this control case,
Ym is a six-by-one vector, including three displacement and three velocity responses on the
center of mass at the base, respectively.
Since this controller is similar to the classic optimal control algorithm, the objective function can
be described as

J ¼
Z 1
0

½XT
r ðtÞQwXrðtÞ þ uTdevðtÞRwudevðtÞ� dt ð12Þ

where the subscript r denotes the vector derived from the reduced-order model, the subscript dev
denotes the control force resulting from the control devices and the subscript w denotes the
weighting. This objective function is similar to that of the conventional H2 optimal control
algorithm [11]. Since the control gain is related only to the output measurement, the objective
function needs to be modified as

J ¼ XT
r;0

Z 1
0

ðeðArþBrGCrÞtÞTðQw þ CT
r G

TRwGCrÞðeðArþBrGCrÞtÞ dt
� �

Xr;0 ð13Þ

and the assumed control force as

urðtÞ ¼ GCrXrðtÞ ð14Þ

where Xr;0 indicates the initial state of the reduced-order model under random initial conditions.
To simplify the objective function, the integral term can be transformed into

H ¼
Z 1
0

ðeðArþBrGCrÞtÞTðQw þ CT
r G

TRwGCrÞðeðArþBrGCrÞtÞ dt ð15Þ

Since the initial condition of the state vector is random, the objective function can be substituted
into an expected form as

J
_
¼ E½J� ¼ E½XT

r;0HXr;0� ¼ trðHXe
r;0Þ ð16Þ

Xe
r;0 ¼ E½Xr;0X

T
r;0� ð17Þ

where E[] denotes the expectation and tr() denotes the trace of a matrix. To optimize the control
force using the expected objective function, the Lagrangian multipliers need to be used in the
expected function of the following form:

J
_

new ¼ trðHXe
r;0Þ þ trfL½ðAr þ BrGCrÞ

THþHðAr þ BrGCrÞ þ ðQw þ CT
r G

TRwGCrÞ�g ð18Þ

where L is equal to the Lagrangian multiplier matrix. Since the objective function is in quadratic
form, the minimum value of this function definitely exists as long as the weighting matrices Qw

and Rw are positive semi-definite and positive definite, respectively. To find the minimum of the
objective function, the derivative of the function with respect to the Lagrangian multipliers, the
matrix H and the control gain can be expressed as follows:

@J
_

new

@L
¼ ðAr þ BrGCrÞ

THþHðAr þ BrGCrÞ þ ðQw þ CT
r G

TRwGCrÞ ¼ 0 ð19Þ

@J
_

new

@H
¼ Xe

r;0 þ LðAr þ BrGCrÞ
T þ ðAr þ BrGCrÞL ¼ 0 ð20Þ
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@J
_

new

@G
¼ 2BT

r HLCT
r þ 2RwGCrLC

T
r ¼ 0 ð21Þ

Here, the first two equations are in the form of the Lyapunov function and the last equation is
directly related to the control gain. To solve these equations, the first step is to determine the
initial control gain at a time close to infinity, and then the second step is to iteratively solve the
two Lyapunov functions until the control gain of matrix G converges. Finally, the time-
invariant control gain can be determined but the control algorithm does not consider the
nonlinear effect from the frictional bearings. Therefore, the control algorithm must be partially
modified to consider the combination of the nonlinear bearing model.

To consider the bilinear model as the nonlinear frictional bearings, two stiffness slopes, pre-
yield stiffness and post-yield stiffness need to be introduced into the system matrix Ar, which can
be described as

ArðtÞ ¼
0 I

� �M
�1
r
�KrðtÞ � �M

�1
r
�Cr

" #
; �KrðtÞ ¼

K
_

0

0 Kb;linear þ Kb;nonlinearðtÞ

2
4

3
5 ð22Þ

where Kb;nonlinear is a nonlinear term with respect to the bilinear model. Because the approximate
nonlinear model depends on the responses of the center of mass at the base and focuses on the
translational responses in the x- and y-direction, there are only four combinations for the time-
variant matrix Ar(t) (two slopes for the x-direction and two slopes for the y-direction). Although
this control algorithm is derived from the linear definition, the control gain at each time step
based on this assumption is initially linear at the beginning time point of the time interval. This
methodology is referred to as the linear approach for nonlinear control problems [18].
Therefore, the four control gains can be generated in advance as long as the pre-yield stiffness
and post-yield stiffness are known. However, the displacement and velocity responses determine
the slope in the current position of the segments in this bilinear model. One of the four control
gains will be selected during the simulation based on the current status of the friction bearing.
Using switching gains may induce sudden impulsive forces in the active control devices, but the
semiactive control devices cannot input energy to structures; therefore, the phenomenon will not
happen in this control strategy.

It is computationally inefficient to calculate the control gain based on the highly nonlinear
hysteretic model if it is embedded in the Ar matrix. Hence, the second way to approach the
computation of the nonlinear control force focuses on the time-invariant system matrix Ar to
generate the control gain. The compensated force coming from the nonlinear terms of the
frictional bearings is added to the optimal control force from the control gain as well as

urðtÞ ¼ GYmðtÞ � mNzb ð23Þ

_zb;j ¼
1

uy
½a _xb;j � ðgj _xb;j jjzb;j jzb;j þ b _uz2b;jÞ� ð24Þ

in which j denotes the j-th component with respect to the control devices, m is the coefficient of
friction, N is the normal force of each bearing, zb is the hysteretic variable, uy is the yield
displacement, xb is the relative displacement of each bearing and a, b and g are the parameters of
the Bouc–Wen model [14]. All parameters are found off-line using the data from the
uncontrolled simulation. The nonlinear control force also contains a directional effect and needs
to be calculated at each time point.
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4. NUMERICAL SIMULATION RESULTS

4.1. Modified evaluation criteria

The performance indices, i.e. J1–J9, are provided in the benchmark description [9] and used to
compare the control strategies with each other if the placement of the measurement and control
devices are set as the same. However, the control performance is not easily compared by these
indices if the control strategies used different control algorithms combined with different
measurements and different types of control devices. Here, a clear and easy-to-read method

Figure 10. (a) Control strategy—using bilinear model and (b) control strategy—using Bouc–Wen model.
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using these indices is proposed to distinguish one control strategy from the others. First, the
modified index J1m is used to consider the relation of the peak base and drift displacements to
the peak control force. The second modified index J2m is used to demonstrate the relation of the
peak base shear, the peak floor acceleration and the RMS floor acceleration to the energy
dissipation. These two modified indices are demonstrated as follows:

J1m ¼
ð1� J3Þ þ ð1� J4Þ

J6
ð25Þ

J2m ¼
ð1� J1Þ þ ð1� J5Þ þ ð1� J8Þ

J9
ð26Þ

These performance indices consider the control performance with respect to the reduction of the
structural responses. A reasonable and effective control strategy is to be able to reduce the
displacements while increasing the accelerations only slightly. Furthermore, large values, instead
of smaller values, of these two indices show better performance.

Figure 11. Responses of peak displacement in the x- and y-direction using the proposed MR damper under
the excitation of the El Centro earthquake record (FP-y and FN-x).
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4.2. Simulation results

4.2.1. Control strategies. In this study, two control strategies are examined in this control
benchmark problem. The first one (see Figure 10(a)) switches four control gains based on the
bilinear model at the center of mass to generate the required force, and then the required voltage
for the MR dampers is calculated through the flowchart shown in Figure 8. The damper force
can be obtained either from the proposed MR damper model or from the benchmark MR
damper model. The second one calculates the required control force using Equation (23) and
then generates the required voltage by the same way. Similarly, two MR damper models are also
evaluated in this control strategy. The largest difference between the two control strategies is the
force generation. The first one is to sense the structural response at the center of mass and
distribute the force to each damper location. The second one is to calculate the required control
force individually with respect to the dampers.

4.2.2. Control case using proposed MR damper model. The nonlinear control algorithm using the
proposed model for MR dampers includes two methods: one uses the bilinear model to estimate

Figure 12. Responses of peak acceleration in the x- and y-direction using the proposed MR damper under
the excitation of the El Centro earthquake record (FP-y and FN-x).
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the nonlinear response of the frictional bearings, while the other uses the Bouc–Wen model to
approximate the nonlinear forces of the frictional bearings. An effective controller will have
large reductions in the base displacement without significantly increasing the floor accelerations.
The two semiactive control algorithms are also compared with the passive-on case in which the
MR dampers act as passive devices with the maximum voltage command. Figure 11 shows the
comparison of the peak displacement responses at each floor and the base in the case of the El
Centro earthquake record.
The results show that either the passive-on control strategy or two semiactive control strategies
produce similar responses to the uncontrolled case in the x-direction. However, in the y-
direction, the semiactive control strategy using the bilinear model to approach the nonlinear
bearing force produces better results than the other control strategies. The reason for this
phenomenon is that the goal of this control strategy is to reduce only the base displacement.
Although the control strategy using the bilinear model for nonlinear bearings effectively reduces
the base displacement, the base acceleration is slightly increased compared with the uncontrolled
case, as shown in Figure 12.

Figure 13. Responses of peak displacement in the x- and y-direction using the proposed MR damper under
the excitation of the Kobe earthquake record (FP-y and FN-x).
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To compare the influence of the major near-fault excitation with the control strategies,
the control case under the excitation of the Kobe earthquake is used and is shown in Figures 13
and 14.

Figure 14. Responses of peak acceleration in the x- and y-direction using the proposed MR damper under
the excitation of the Kobe earthquake record (FP-y and FN-x).

Table I. Results of control strategies using the proposed MR dampers (FP-x and FN-y).

J1m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Semiactive Passive-on �0.14 0.66 0.13 0.49 �0.65 2.22 0.73
Bilinear 0.06 1.30 0.01 0.45 �0.57 2.33 �0.07
Bouc–Wen 0.01 0.47 0.36 0.17 �1.19 1.90 �0.12

J2m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Semiactive Passive-on �1.08 �1.08 �3.27 �2.94 �2.38 0.37 �1.09
Bilinear �1.14 �0.85 �2.78 �2.34 �2.05 0.64 �1.17
Bouc–Wen �0.94 �0.51 �2.21 �1.54 �2.12 0.73 �0.08

SEMIACTIVE CONTROL STRATEGY FOR A PHASE II BUILDING 691

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2008; 15:673–696

DOI: 10.1002/stc



In this case, both of the semiactive control strategies mitigate the displacement responses with
a slight increase in the acceleration response for the Kobe earthquake record. However, the
increase is still in the acceptable range. The overall comparison of the control performance using
the modified indices is reported in Tables I and II.

Table II. Results of control strategies using the proposed MR dampers (FP-y and FN-x).

J1m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Semiactive Passive-on �0.14 0.66 0.13 0.49 �0.65 2.22 0.73
Bilinear 0.06 1.30 0.01 0.45 �0.57 2.33 �0.07
Bouc–Wen 0.01 0.47 0.36 0.17 �1.19 1.90 �0.12

J2m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Semiactive Passive-on �1.08 �1.08 �3.27 �2.94 �2.38 0.37 �1.09
Bilinear �1.14 �0.85 �2.78 �2.34 �2.05 0.64 �1.17
Bouc–Wen �0.94 �0.51 �2.21 �1.54 �2.12 0.73 �0.08

Figure 15. Simplified model for the MR dampers of the benchmark control problem.
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4.2.3. Control case using the benchmark MR damper model. The second part of the nonlinear
control algorithm is to use the MR dampers that are provided by the benchmark control
problem and to combine with the aforementioned control algorithm. In this control case, the
voltage generator used to drive the MR dampers adopts the same method used for the proposed
MR dampers. Here, only two levels of voltage commands are considered: the maximum voltage
(1.0 V) and the minimum voltage (0V).
The simplified model (see Figure 15) is found from the forward model provided by the
benchmark control problem. After controlling the isolated building using the control algorithm
combined with the bilinear model or the Bouc–Wen model for nonlinearly frictional bearings,
the results show that the control algorithm combined with the Bouc–Wen model is more suitable
for this type of MR damper. The reason is that the control performance demonstrates a higher
reduction in peak base displacement without inducing much acceleration response as compared
with the other control strategy in Figures 16 and 17. Similarly, Tables III and IV represent the
modified performance indices to evaluate these two control strategies.

In summary, the results of the two semiactive control strategies reveal that the control
effectiveness is very close to the sample control strategy in the original benchmark control

Figure 16. Responses of peak displacement in the x- and y-direction using the MR dampers of the
benchmark control problem under the excitation of the Newhall earthquake record (FP-x and FN-y).
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problem with better results under certain excitations. Moreover, the two control strategies also
focus on the reduction of the base displacement without significantly increasing acceleration
responses.

Figure 17. Responses of peak acceleration in the x- and y-direction using the MR dampers of the
benchmark control problem under the excitation of the Newhall earthquake record (FP-x and FN-y).

Table III. Results of control strategies using the MR dampers provided by the benchmark control problem
(FP-x and FN-y).

J1m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Bilinear 0.30 1.08 �0.50 0.26 �0.68 2.12 �0.29
Bouc–Wen 0.47 0.54 0.72 0.03 �1.00 2.06 0.18
J2m Newhall Sylmar El Centro Rinaldi Kobe Jiji Erzinkan

Bilinear �1.54 �1.78 �3.79 �2.60 �2.75 �0.21 �1.79
Bouc–Wen �1.39 �2.01 �2.14 �2.52 �2.34 �0.72 �1.16
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5. CONCLUSIONS

In this study, an isolated building structure is considered to apply structural control strategies to
bearing at the base. The isolation systems contain linear elastomeric bearings and nonlinear
isolation bearings. Four control strategies are proposed for the semiactive case made from two
different control algorithms combined with two different MR dampers. Two different types of
MR dampers are selected in this study: one is provided by the sample control of this benchmark
control problem and the other one is provided by NCREE and validated by the performance
test at NCREE. The controller considers the output feedback control algorithm to generate the
required control force. To adopt the nonlinear structural system, the control strategy has been
appropriately modified into two methods: one method considers the bilinear model for the
nonlinear bearings and derives four respective control gains to calculate the control force, and
the other method obtains a control gain based on the initially linear system and to consider the
nonlinear bearing force into the control force at the same time. All control strategies select MR
dampers as control devices and simulate MR dampers based on the modified Bouc–Wen model.
The inverse dynamic model of the MR dampers depends on a simplified model and clips the
voltage range to drive different levels of damper force. As shown in the results, the control
strategies can mitigate displacement response at the base significantly while acceleration
response is slightly increased at the same time by employing the proposed MR dampers or
the MR dampers of the benchmark control problem. Therefore, all of the four control strategies
are effective in reducing the displacement at the base corresponding to the original goal in
this study.
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