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ABSTRACT 
 
Supplemental-damping technology is suitable for a steel frame because of ease for connecting dampers and 
relatively low frame stiffness requiring drift control. During an earthquake, the members surrounding the 
damper are subjected to combined bending moment and axial force produced cyclically by the actions of the 
damper and frame, respectively. Damper force and damper deformation have shifted phase, and the latter is 
in-phase with the frame story drift, which makes phase difference between the moment and axial force.  
 
These as well as slab and beam composite actions, and stress concentrations at the gusset plate for connecting 
damper make beam behavior complex, and they are discussed by analyzing data from the two experimental 
projects; shake-table tests of a full-scale 5-story building, and cyclic tests of the beam-column-gusset plate 
subassemblies. The cyclic test employs a newly developed loading method alternating displacement control for 
story drift, and force control for damper force whose target value is calculated step-by-step by a hybrid scheme 
using the numerical model of the damper. 
 
When analyzing the data, two contributions having phases of story drift and damper force, respectively, are 
extracted from each of the forces shared by the steel beam, concrete slab, gusset plate, and their corresponding 
strains. The results as well as implication to analysis/design of the members and connections in the damper bay 
are discussed. 
 
KEYWORDS: Passive control, Dampers, Composite beam, Full-scale test, Subassembly test, Gusset plate 
 
 
1. INTRODUCTION 
 
1.1 General 

 
Recent earthquakes in Japan have led to greatly increased use of supplementally-damped systems in order to 
protect the buildings and to assure continuity of their functions. Steel frames are suited to the technology 
because of ease for connecting dampers and relatively low frame stiffness requiring drift control.  As depicted 
in Figure 1a for the undamped frame, the beam not connected to dampers primarily develops bending moment 
synchronized with the story drift during an earthquake. Whereas in Figure 1b for the damped frame, the beam in 
a supplementally-damped system connected to typical brace-type damper develops combined bending moment 
and axial force. At early stage of increasing story drift, the damper force and consequently the beam axial force 
quickly increases, while the beam moment increases rather slowly in proportion to the story drift. Therefore, 
beam axial force and moment have different phase and time lag, which is the key point in this paper. 
 
From now on, we define the “frame action” as development of beam and column bending moments due to the 
story drift, and “damper action” as development of damper axial force and consequently the beam and column 
axial forces. Summarizing above discussions, undamped frame response is caused by frame action only, 
whereas the damped frame response is caused by both frame and damper actions. It also should be noted that the 
phase of the damper force depends on the hysteretic characteristics as shown in Figure 2 for major dampers in 
Japan. Although the dampers are accurately modelled and their properties are well understood, it is not the case 
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beam as well as new studies on axial and bending load on the composite beam, and gusset plate connection 
behavior are being conducted at Tokyo Institute of Technology. The objectives of this paper are to discuss the 
above issues on various composite behaviors and to clarify their relations with frame and damper actions. The 
behaviors observed from two types of full-scale tests are considered. Special experimental methods for data 
analysis as well as loading control are proposed. The paper is written according to each test as follows:  
 
The first part is based on shake-table tests of a full-scale 5-story steel frame building (Figure 3a). The tests were 
conducted by inserting and replacing 4 different types of dampers or by completely removing them. The world’s 
largest shake table E-defense was used, and the frame remained almost elastic even under the shaking using the 
one of the catastrophic ground motion recorded during the 1995 Kobe earthquake. The frame was instrumented 
with abou 1,400 sensors, and the proposed data analysis method will be used to obtain internal moments, shear 
forces, and axial forces of all beams and columns. damped frame, they are obtained based on the phase 
difference of the frame and damper actions. The composite beam stiffness is compared with bare beam stiffness, 
and effective slab width is estimated for positive and negative bending in both undamped and damped frames. 
 
The second part is based on full-scale subassembly tests by simulating the frame and damper actions, 
respectively (Figure 3b). Story drift is controlled to simulate the frame action, and the damper force is controlled 
to simulate the damper action. The target damper force is calculated at each step based on the current state of 
frame and corresponding damper deformations. It is a simplified hybrid test combining the displacement and 
force controls. Obtained strain distributions are decomposed into frame and damper action components, 
respectively. The specimens with and without the slab are compared. A method combining the two actions 
differently to predict strain distributions for hypothetically selected force magnitude and/or damper hysteretic 
type is proposed.  
 

 
  
2. FULL-SCALE 5-STORY STEEL BUILDING WITH STEEL DAMPERS 
 
2.1 Outline of Full-Scale Tests 
 
As shown in Figures 4 and 5, the building is 5-story with two bays in each direction. The plan dimension is 
10m×12m, and total height from the upper surface of a stiff foundation beam is 15.8 m. Total seismically active 
weight of the superstructure is 4,730 kN. The frame consists of steel members, and all nine columns in Figure 5 
are 350 x 350 mm box column sections with thickness varying from 12 to 22mm. There are nine 
“undamped“ bays, of either 5 or 7 m span and only three “damped“ bays of 5 m span containing dampers. In 
Y-direction (Figure 5), there are only one damped frame, in contrast to X-direction having two damped frames. 
The damper therefore is the largest in Y-direction, having twice capacity than the dampers in X-direction. The 
beam-column connections are of fully-restrained type for both undamped and damped frames. 
 
Each span consists of three beam portions, two end portions are 0.825 and 1.075 m long from column face in the 
undamped and damped frames, respectively. In center portion, all beams are wide-flange sections with 400 mm 
depth and 200 mm width, and web thickness varies from 9 to 12 mm and the flange thickness from 12 to 22 mm. 

Figure 3  (a) Exterior view of the building specimen, and (b) subassembly specimen 

(a) (b) 



For the undamped frame (Figure 5), the flange and web of the end portions are thicker than those of the center 
portion, and the flange is haunched to delay yielding. The three portions are bolt-connected together through the 
splice plates on flanges and webs as will be shown later. As for the damped frames (Figure5), the three portions 
have a uniform section to resist large axial forces transmitted from the damper, and their flanges are connected 
by butt-weld to assure continuity. No haunch is used due to already large section created by the gusset plate 
(Figure 4). The concrete slab with corrugated metal deck is used at typical floors, and the height of the slab is 
155mm, with depth of corrugated deck 75mm. The deck runs in Y- direction. The roof slab has uniform 
thickness of 150mm. Single line of shear studs of 19 mm diameter is used with spacing of 200 mm. 
 
For the economical reason the building was tested repeatedly by varying the damper type. In the order of the test 
performed, four different types of dampers, steel, oil, viscous, and viscoelastic dampers, are used (Figure 2), but 
only the test with steel dampers is considered in this paper. Mostly, the 4th floor beams in either undamped 
frame or damped frame, having no slab, slab on one side, and slab on two sides of the beam (Figure 5) will be 
discussed. Thus, six (= 2 types of frames x 3 situations of slab) different beams are considered in this study, and 
they are depicted in Figure 5. In the building test, the three-direction ground motion recorded at the JR Takatori 
station during the 1995 Kobe earthquake was scaled 0.05, 0.1, 0.2, 0.4, and 1.0 times. However, only unscaled 
ground motion will be considered here, and will be named as “Takatori ground motion” from now on. The 
maximum story drift angle between the 3rd and 4th floors was 0.60% rad in both X- and Y-directions, whereas 
those throughout building height were 0.66% between the 1st and 2nd floors, and 0.81% between the 2nd and 
3rd floors, respectively. 
 
2.2 Composite Beam Internal Force Estimations from Steel Strains and Their Phases 
 
This section proposes a method to determine the forces in the composite beams of undamped and damped 
frames in Figure 6 based on the strains recorded from the steel beam portion only. It determines bending 
moment M and axial force N of the composite beam (Figure 6b), and internal forces such as the slab axial force 
Nc, steel beam axial force Ns , and bending moment Ms .  The strain gages were attached to two sections at 

Figure 5  Plan, damper locations, 
and strain locations 
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Figure 6  Horizontal forces and bending moments in the undamped and damped frames 
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every span of the building. Typically their distance from the closest column centerline is either 0.21 or 0.26 
times 7 m span length, and 0.31 or 0.34 times 5 m span length. These locations are selected to maintain strains 
elastic and to avoid possible disturbance caused by the gusset plate, beam splice, horizontal haunch, and others. 
 
Figure 6a shows undamped frames with horizontal forces and bending moments, where typically N = 0 can be 
assumed, and an earlier method (Suita et al. 2009, Yamada,2009 and Kasai et al., 2011) shown in Figure 7 will 
be used. As will be demonstrated, recorded steel strains in the composite beam distributed almost linearly. Thus, 
assuming plane section for the steel beam portion, average strain )(i

sε and curvature )(i
sφ  at the i-th step are 

obtained by the least square fit to four strains )(i
kε = 1 to 4. Then, )(i

sN , )(i
cN , )(i

sM , and )(iM are obtained as follows:  
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where E = steel Young’s modulus, As and Is = steel beam portion cross section and moment of inertia, 
respectively, yc = distance between the centroids of the steel beam and concrete slab. This method does not 
require the value of concrete slab strain, slab effective width, or slip between the slab and steel beam. 

 
As for the damped frame in Figure 6b, the beam axial force )(iN 	 0 results in change of the neutral axis location

)(' ie as shown in Figure 8a, and the values of )(i
sN , )(i

cN , )(iN , )(i
sM , )(iM and )(' ie must be found. For this purpose, 

frame and damper action components )(i
Fkε and )( i

Dkε will be extracted from the recorded k-th strain )(i
kε at the i-th step 

(Figure 8a). The phases of the frame and damper actions are assumed to be represented by bending moment of 
the closest column )(i

colM and axial force of the damper below the beam )(i
dampF , respectively. The composite beam is 

assumed to be elastic but have higher and lower stiffness under positive and negative bending, respectively. 
Thus, by extrapolating )(i

kε -values and estimating the strain at the slab centroid, the strain data is grouped into 
two sets showing positive and negative strains.  For each set, multipliers Fkλ and Dkλ to minimize the following

kR are obtained. 
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It is noteworthy that each )(i

kε and thus-found )(i
Fkε and )( i

Dkε appear to be almost linearly distributed even under the 
combined frame and damper actions. Therefore, assuming plane section for each action at every i-th step, the 
curvature )( i

Fφ , )( i
Dφ and the average axial strain )(i

aε and )(i
bε are obtained by the least square fit to strains )(

1
iε to )(

4
iε

(Figure 7). Using them, all the above-listed values are obtained from the following equations: 
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where, )(' ie is obtained from Figure 8a, and is assumed to be common for both frame and damper force actions. 
The moment obtained by this method was reasonably accurate, satisfying the joint equilibrium with the steel 
columns whose moments were directly estimated. 

Figure 7  Undamped frame (N  =0): Composite beam internal forces and steel strains, at i-th time step
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2.3 Strain Decomposition: Validations and Findings 
 
The above section has proposed the method to obtain frame and damper action components )(i

Fkε and )( i
Dkε from the 

recorded strain )(i
kε . In this chapter, the experimental data obtained from the 5-story building with steel damper 

using the Takatori ground motion (Section 2.1) is considered. As the first step of validating the method, choice 
of )(i

colM to represent the frame action component is examined. Figure 9 shows the case of undamped frame having 
only the frame action component, and the strain )(

4
iε is compared with )(i

colM . Three cases (Figure 5) of the beam 
without slab, with slab extending to one side (one side slab), and with slab extending to two sides (two sides 
slab) located at the 4th floor are shown. They are very closely related, and demonstrate reasonableness of 
choosing )(i

colM to represent the frame action. 
  
Figure 10 shows the case of damped frame having both the frame action and damper action components, and the 
recorded strain )(

4
iε is decomposed into )(

4
i

Fε and )(
4

i
Dε . Like the above discussion, three cases of the slab attachment 

at the 4th floor are shown. Regardless of the extent of slab contribution, sum of the )(
4

i
Fε and )(

4
i

Dε closely agrees 
with )(

4
iε , indicating accuracy of using linear combinations )(

4
)(
4

i
D

i
F εε  to represent )(

4
iε . Note that the accuracy was 

confirmed also for strains )(
1

iε to )(
3

iε , where )(
4

i
Fε was large at the bottom flange and )(

4
i

Dε  was large near the neutral 
axis, respectively.  
 
Figures 11 shows )(i

kε recorded at the positive and negative peak moments in the undamped frame ( )(iN = 0), 
where three cases of the slab attachment at the 4th floor are shown. The strains are almost linearly distributed, 
justifying the assumption of plane section. When no slab is attached, neutral axis is at the mid-height of the steel 
beam section (Figure 11 left), since )(iN = 0. It is considerably higher when the slab is attached, and becomes as 
high as the top flange of the steel beam (Figure 11 right). Note also that the negative bending case still shows 
significant composite action, as depicted by high locations of the neutral axis. This is contrary to the typical 
consideration, but similar results have been obtained from full-scale frame tests elsewhere (Kasai et al., 2005).   

Figure 8  Damped frame (N  ≠0): Composite beam internal forces and steel strains, at i-th time step
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In Figure 12, the black dots and solid lines show the )(i

kε recorded at the positive and negative peak moments in 
the damped frame ( )(iN 	 0). Almost linearly distributed strains, like those in the undamped frame above, justify 
the assumption of plane section for the present decomposition method. In the bare steel beam, the neutral axis 
shifts upward for both positive and negative moments (Figure 12 left), since )(iN produces axial strains )( i

Dkε in the 
opposite direction of )(i

Fkε at the upper cross section. Because of this, the neutral axis in the composite beam 
(Figure 12 middle & right) tends even higher than in the undamped frame.   
 
In addition to the recorded )(i

kε , the frame and damper action components )(i
Fkε and )( i

Dkε are shown by the broken 
lines in Figure 12. The value of )(i

Fkε + )( i
Dkε is about equal to the value )(i

kε , indicating accuracy of the 
decomposition. Linearly distributed )(i

Fkε and )( i
Dkε also justify the assumption of plane section for both frame and 

damper actions, and they show almost the patterns of bending and axial loads. Note that )(i
Fkε at negative bending 
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Figure 10  Damped frame: Steel beam strains (unit: micro-strain) at bottom flange in three cases of slab 
attachment, recorded steel strain ε4  vs. combined frame and damper action components εF4 +εD4 
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Figure 12 Damped frame: Strain distributions εk  vs. frame and damper action components εFk, εDk,
 k=1 to 4, see Fig.8 (unit: micro-strain) 
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frame ( )(iN 0), in order to understand the contributions of the steel beam portion in the composite beam. )(i
sM

appears to be half or less compared with )(iM for both positive and negative bending cases, indicating significant 
composite effect even for the latter. Similarly, )(iN and )(i

sN are also plotted in Figure 16. Even in the undamped 
frame where )(iN =0 (Figure 16a), significant )(i

sN develops due to the composite action regardless of the 
positive and negative loading cases. In the damped frame, )(i

sN appears to be even larger (Figure 16b) due to the 
damper force transmitted. The steel beam portion, therefore, appears to develop local axial force )(i

sN
considerably larger than total axial force )(iN of the composite beam. Although )(i

sM is reduced, this indicate 
possibility of larger strain in the bottom flange of the steel beam portion. 
 
From the moment diagram of Figure 14 shown earlier, the positive moment is about 1.2 time the negative 
moment in the undamped frame, whereas it becomes larger in the damped frames. It is about 1.5 times in the 
damped frame of the X2 frame, where the damper is twice larger than the other two (Section 2.1). This lead to 
larger tension forces in the composite beam while the concrete is still in compression, and effectively increased 
the moment arm of the stress block (Figures 12 and 15: two sides slab). However, this also means smaller 
moment under negative bending, due to tension and eventually cracking of the concrete as discussed (Section 
2.3). Note also that these situations can change, depending on relative sizes of steel beam, slab, and damper. 
 
The above-mentioned relationships among beam axial force, positive and negative moments, and their effects on 
beam stiffness seem complex and requires further study. This paper only provide introductory remarks: The 
concrete slab is assumed to share the plane section with the steel beam by considering no slips between them. 
Then, from the recorded steel strains, concrete strain )(i

cε is obtained by extrapolation. Since )(i
cN is estimated from 

Eq. 3b and cE is given, slab effective width B = )(i
cN /( tεE i

cc
)( ), where t = slab thickness. Finally, the composite 

Figure 15  Composite beam moment M   vs. steel beam moment Ms 
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moment of inertia I can be calculated. In Figure 17, average of I/Is values at the two sections under positive 
bending are indicated for every beam on the 4th floor. The beams in Figures 11 and 12 (two sides slab) 
subjected to the Takatori ground motion are used. The values are very large, varying from 2.38 to 3.0. Figure 
18a indicates thus-calculated B, corresponding )(' ie , and I/Is for the undamped frame ( )(iN = 0). The values are 
only 10 % different between the positive and negative loading cases. Whereas in Figure 18b ( )(iN 0), they are 
less than half the values of positive loading case, as discussed earlier. Except for this case, B is 0.7 to 0.8 times 
the effective width of 1,200 mm estimated from the Japanese specification (AIJ, 2010). 
 
 

 
 
3. FULL-SCALE SUBASSEMBLY SUBJECTED TO FRAME & DAMPER ACTIONS 

The full-scale building shake table test discussed above is probably the most realistic simulation method for 
seismic behavior. By numerous sensors and proposed data analysis method, internal forces of all members 
including dampers have been found, and they would be very useful in clarifying the effects of frame and damper 
actions on local and global responses of the building.  
 
On the other hand, such extensive instrumentations are still not dense enough to find more details of local 
behavior for the members and connections. The full-scale subassembly test to supplement such information, 
therefore, is important experimental method. Unlike the full-scale building test limited to one or only a few 
specimens, a large number of subassemblies could be tested systematically by varying pertinent parameters. In 
order to fully realize such advantages, the test set-up must be compact and convenient for mantling/dismantling 
the specimen, and loading method and boundary conditions must, although not truly realistic, reflect important 
features. This chapter discusses the test with such loading method as well as another applications of the data 
analysis method presented in Chapter 2, all of which consider the frame and damper actions. 

3.1 Hybrid Test Combining Frame and Damper Actions 
 
Figure 19a shows the concept of a simplified hybrid test method combining actions of a subassembly and a 
virtual damper. The subassembly has a configuration of L-shape, representing a quarter portion of the frame. In 
order to be consistent with Chapter 2, “positive loading” is defined to cause axial tension and positive moment 
for the beam, and vice versa (Figure 19b). Figure 20 shows the test set-up, where laterally supported L-shape 
specimen is connected to two links that keep the distance between the midpoint of the brace and inflection 
points in beam and column, respectively.  
 
Two parallel actuators (total 3,000 kN capacity) are used for the displacement control to satisfy the target story 
drift u or story drift angle θ = u/H, and one oil jack diagonally placed (1,400 kN capacity) for the force control 
simulating damper force Fdamp. The target u reflects the frame action, and the target Fdamp reflects damper action. 
The target Fdamp depends on the change Δua in diagonal distance (Figure 20) due to local deformations such as 
gusset plate yielding, axial contraction of the beam due to local buckling, and so on. Target Fdamp is calculated 
by substituting the measured Δua into the mathematical model of the damper (virtual damper) at every step of 
the test. The virtual damper can be of any damper type, as long as the mathematical model is available. The 
steps for displacement control, force control, and damper force calculation are shown in Figure 20.   

Figure 17  Distribution of I/Is  
at positive bending 
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 Figure 21 shows the set-up and the specimen. The specimen geometry and material are identical with those in 
the full-scale frame explained in Chapter 2. The beams are the same as described in Section 2.1, and the typical 
specimen is a built-up section of BH-400×200×12×19 (400 mm deep, 12 mm thick web, 200 mm wide and 19 
mm thick flange). The column is a square box section of □-350×350×19. The nominal yield strength of the steel 
material is 325 MPa for all the elements, and actual yield stresses are 365, 390, 398, and 401 MPa for the beam 
web, flange, column, and gusset plate, respectively. 8 specimens of this size with varied details were tested, and 
17 specimens of larger size (BH-500×250×12×22, □-400×400×19) had been tested (e.g., Kasai et al. 2015)   
 
Figure 22 shows the test results using the larger specimens mentioned above. The virtual dampers were the steel 
damper, viscoelastic damper, and friction damper, respe  ctively. The damper force horizontal component Qd , 
frame horizontal force Qf , and system horizontal force Qs are shown. The target Qd and applied Qd are shown in 
the same graph by the gray and black solid lines, respectively. As understood from Figures 22a and b, the force 
control of the virtual steel and viscoelastic dampers was reasonably accurate. Note that for the friction damper, 
calculated target force Fdamp was too sensitive to Δua (Figure 20) during unloading, because of its large elastic 
stiffness. Thus, instead of calculating the target Fdamp, the sign of the slip force Fdy is reversed and used as the 
target Fdamp. This resulted in rigid-plastic damper performance, causing abrupt changes in strains in the 
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subassembly. Such behavior is considered to show an extreme and interesting case of the elasto-plastic damper, 
and was investigated further. 
 
The frame action can be observed from the Qf –curves in Figure 22. The first yielding occurred at about θ = 
±0.5% rad, due the stress concentration at the bottom flange immediately outside the gusset plate connection. 
Significant reduction in horizontal stiffness occurs due to further beam yielding at θ= ±1% rad. As will be 
shown, the beam fully yields at θ= ±1.5% and remain stable up to θ= ±2% rad and larger except for some 
specimens (Kasai et al. 2015). Figure 23 shows the interaction of beam axial force N and bending moment M 
normalized by the yield axial force Ny and full plastic moment Mp , respectively.  
 
Because of the L-shape, the M - N relationship becomes analogous to Qs – θ relationship. The fatness of these 
loops indicate extent of the phase difference between the force and deformation and corresponding equivalent 
damping of the system. The system using the friction damper with idealized rigid unloading stiffness gives the 
largest energy dissipation and damping. Figure 23 shows that beams of all three systems reach full plastic state 
at a story drift angle θ= ±1.5% and N / Ny  0.25. Among the three systems, yielding of the beam was most 

Figure 22 Test results for damper, frame, and system action (three types of dampers, bare steel baem)
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In this section, separate tests, namely, “frame action test” applying θ= ±1/200 rad and Fdamp = 0, and “damper 
action test” applying Fdamp = ±700kN and θ=0 are conducted. The separate test results are shown by the solid 
lines, and appear to agree well with the values of frame and damper action components obtained above (broken 
lines). In these tests reflecting the frame action and damper action separately, the strains as well as  i

sN ,  i
cN ,

 i
sM , and  ie' (Section 2.2) are also compared with frame and damper action components obtained from the 

combined test using the data analysis method. In this manner, accuracy of the data analysis method proposed in 
Chapter 2 for the beam strains as well as internal forces has been validated.  
 
Figure 25a also shows the result of the frame action test. It plots beam shear vs. beam chord rotation relative to 
the cross-sectional plane defined at 275 mm (half of the gusset plate length) from the column face. The bare 
steel subassembly test result is also plotted, and the composite beam chord rotation is 0.9 times and 0.95 times, 
shear force is 1.28 times, and 1.08 times those of the steel subassembly, respectively. Because of this the column 
shear force and chord rotation increase and becomes larger than the steel subassembly, especially at positive 
loading (Figure 25b).   
 
3.3 Gusset Plate Strain Decomposition: Validations and Findings 
 
In this section, data analysis will be extended to highly non-uniform strains in the gusset plate connections. 
Equation 2 is applied to the strain gages in Figure 26, where the total number k of the strain gages in the rosette 
and others is 66. Like Section 3.2, Equation 2 is applied up to the end of the second cycle of the peak story drift 
angle θ= 1/200. After obtaining the frame and damper action components, principal strains and directions are 
calculated and plotted. Figure 26 shows such a result at θ=+1/200, Fdamp =-700kN, and sum of the two 
components. Direction of principal strains of frame action component is about same as that of damper action 
component (Figure26a, b), except for panel area in which they are opposite. 
 
Thus, in both positive and negative loading cases, the strains in the connection will increase by combining the 
two actions, whereas those in the panel decrease. In the gusset plate, the frame action component shows largest 
principal strains near the beam flange (790 micro-strain) and near the column face (690 micro-strain) at 
θ=+1/200. On the other hand, the damper action component shows only small principal strains. Thus, the gusset 
plate has much reserved strength against the damper action. It is governed by the frame action and would yield 
at θ= 1/100, which however could be avoided by simply increasing the plate thickness. The Japanese criteria of 
gusset plate considers only damper force, but it should consider the frame action discussed here. 
 
As the separate tests, the results from the frame action test and damper action test are shown in Figures 27a and 
b, respectively. They are analogous to plots of the frame and damper action components extracted from the 
combined test by using the proposed data analysis method. Using the method, therefore, participations of the 
frame and damper actions will be clarified without conducting separate test, and could effectively predict the 
hypothetical case of different balance of the two actions. Moreover, using the plots shown in Figure 28, the time 
history curve of the damper action may be shifted or its shape may be modified (e.g., to sine wave for 
viscoelastic case) to examine the effects on the superposed responses. 
 
 
 
 



 
 
 
 
 
 
  

Figure 26  Combined test: Decomposition of principal strains
recorded at θ=+1/200, Fdamp =-700kN, and sum of the two 
components (unit: micro-strain) 
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Figure 27  Separate tests: Recorded principal strains
at three different tests (unit: micro-strain) 
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4. CONCLUSIONS 
 
In a supplementally-damped system, the composite beam is subjected to combinations of positive and negative 
bending produced by the frame action, and, especially where damper is attached, the compressive and tensile 
forces produced by the damper action. The composite beam behavior can significantly affect the overall frame 
stiffness as well as local strain distributions in the members and connections. This paper has investigated the 
issues based on full-scale experiments of 5-story building and subassemblies. The conclusions are as follows: 

1. The composite action characterized by upward shifting of the beam neutral axis under positive bending and 
even negative bending was clearly observed from the strains recorded at the steel beam portions. Additional 
shifting occurs due to the beam axial force produced by the dampers. 

2. Proposed data analysis method has decomposed the recorded strains into the frame action and damper 
action components based on phase difference between the two actions. Strains due to the frame and damper 
actions are linearly distributed and almost constant, each maintaining plane section.  

3. Internal forces of the composite beam with and without axial forces are estimated for the two types of tests. 
They are verified through examinations of join equilibrium of the building, and direct comparison of the 
bending and axial loads measured from the subassembly. 

4. Stiffness of the composite beam is estimated by using thus-found internal force and assuming plane section 
extended to the slab. It is somewhat smaller than the values from specifications, and is considerably smaller 
for negative bending and compressive axial load. Slip at slab-beam interface must be studied. 

5. Proposed hybrid test method for the subassembly with simulated frame and damper actions performed well, 
producing realistic overall hysteresis and local behavior. Simultaneous displacement control and force 
control, connected by numerical simulation of the damper action, are performed.  

6. Two-dimensional strains at the gusset plate of the subassembly are also decomposed, and highly 
non-uniform strains are clarified by combination of the two scaled actions. Contribution from each action is 
obtained without conducting separate test, and combined effects can be easily evaluated for design.  

 
In addition to the experiment-based studies explained, analytical study of extended Newmark’s composite beam 
theory as well as numerical simulations are being performed at Tokyo Institute of Technology. 
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