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ABSTRACT  
 
This study presents multi-scale structural health monitoring (SHM) technologies for large civil structures. It 
involves four major tasks: (1) the multi-scale finite element modeling of a large civil structure that can integrate 
the global structural model equipped with global sensors with the local structural details installed with local 
sensors; (2) the development of multi-scale model updating method that uses multi-scale updating parameters 
and objective functions together with the Kriging method; (3) the optimal placement of multi-type sensors that 
can integrate global and local sensors, minimize the required number of sensors, and increase the accuracy of 
damage detection via best response reconstruction; and (4) the development of multi-scale damage detection 
method that can synthesize the measurement data from different sensors with different scales. The accuracy of 
the proposed technologies is validated by conducting various experimental studies.  
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1. INTRODUCTION  
 
Many innovative civil structures have been constructed around the world. These structures are subject to harsh 
environments, which present many challenges to professionals for the functionality, safety and sustainability of 
the structures. The structural health monitoring (SHM) technologies have been regarded as a cutting-edge 
approach to providing a better solution for the problems. Over the past two decades, significant effort has been 
dedicated to vibration-based methods for damage detection in terms of measured global structural responses. 
However, most large civil structures are complex structures, comprising tens of thousands of structural 
components of different sizes and connected to one another in different ways. Local damage often does not 
significantly affect the global responses of a structure, making global response-based damage analysis inaccurate 
and sometimes impossible. Moreover, the number of sensors in an SHM system for a large civil structure is 
always limited, and the sensors may not directly monitor the locations of structural defects. Therefore, the 
successful application of damage detection methods to a large civil structure is very limited.  
 
This study presents multi-scale structural health monitoring (SHM) technologies for large civil structures. It 
involves four major tasks: (1) the multi-scale finite element modeling of a large civil structure; (2) the 
development of multi-scale model updating method; (3) the optimal placement of multi-type sensors; and (4) the 
development of multi-scale damage detection method. The accuracy of the proposed technologies is validated by 
conducting various experimental studies. 
 
2. MULTI-SCALE FINITE ELEMENT MODELING 
 
In practice, a large civil structure is often modeled via finite element (FE) method using a combination of beam, 
shell, solid, and other elements of similar scale for the static and dynamic analyses at a global level. Stress 
concentration, crack initiation and propagation, fatigue, and fracture are local phenomena that are often not 
represented in the global structural model. However, many types of defects are locally generated at the material 
points and sectional levels and may evolve into a global structural damage and possibly cause structural failure. 
Thus, a multi-scale FE modeling of large civil structures has recently attracted increasing attention in the field of 
structural health monitoring [1]. Multi-scale modeling of a large civil structure mainly aims to simulate and 
evaluate simultaneously its structural performance at both the macro- and micro-scales. This section first 



presents a new mixed-dimensional FE coupling method that can achieve both displacement compatibility and 
stress equilibrium at the interface between the different element types. The new mixed-dimensional FE coupling 
method is then used to establish the multi-scale FE model of a transmission tower.  
 
2.1. Interface Coupling of Mixed-Dimensional Elements 
 
Taking the interface coupling of beam-to-solid elements as an example, the displacement constraint can be 
established in the sense that the displacement of beam at the interface equals to the generalized displacement of 
solid at the interface, which can be expressed as 
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where Bu and Su are the nodal displacement vector of beam and solid, respectively, at the interface; C is the 

coefficient matrix of the displacement constraint equation. The term of SCu can be seen as the generalized 

displacements of the solid, matching with the beam displacements Bu at the interface and obtained by weighting 

the coefficient matrix C over the solid displacement vector Su at the interface. In consideration that the sum of 

virtual work done by the corresponding forces at the interface of the two types of elements shall be zero, the 
constraint equation of nodal forces at the interface can be expressed as 
 

            T
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where BF and SF are the nodal force vector of beam and solid, respectively. It is interesting to see that the 

coefficient matrix TC of the force constraint equation is the transpose of the coefficient matrix TC of the 
displacement constraint equation. The coefficient matrix of the force constraint equation can be regarded as a 
distribution matrix to distribute the forces or moment at the node of the beam to the nodes of the solid at the 
interface. The satisfaction of both Eq. (2.1) and Eq. (2.2) can achieve both displacement compatibility and stress 
equilibrium between the different element types. Furthermore, Eq. (2.2) indicates that the distribution 
coefficients in the force distribution matrix are the corresponding nodal forces of the solid at the interface under 
unit force or moment. Hence, the coefficient matrix of the force constraint equation actually refers to the nodal 
forces along the cross-section of the solid under unit force or moment. Based on this principle, a new numerical 
method compatible with commercial FE codes has been developed to figure out the coefficient matrix of the 
force constraint equation. Once it is obtained, the coefficient matrix of the displacement constraint equation can 
be easily found, and both displacement compatibility and stress equilibrium conditions at the interface are 
satisfied. 
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Figure 2.1 Physical model of a transmission tower 
 
2.2. A Physical Model of a Transmission Tower  
 
In order to verify the accuracy of multi-scale modeling and analysis, a physical model of a transmission tower 
structure was built (see Figure 2.1). The tower is assembled from 23 types of angle members, which are 



connected to each other at joint plates with bolts. The angle members and gusset plates were tailor-made in a 
factory by using the stainless steel plates. The completed tower model had 930 angle members, 402 gusset plates 
and 3649 bolts. The static tests were carried out on the physical model of the transmission tower to obtain the 
strain and displacement responses of the tower under a concentrated load. The hammer tests were carried out on 
the physical model of the transmission tower to identify the natural frequencies and modal shapes of the tower. 
The test data will be then used for validating the multi-scale modeling and analysis results. 
 
2.3. Multi-Scale Modeling of the Transmission Tower 
 
For a transmission tower, there are many complex problems to deal with in the process of multi-scale modeling, 
such as the interface coupling of mix-dimensional elements and the contact problem between bolts and plates. It 
is therefore more convenient to build the multi-scale model of the transmission tower using commercial FE 
software. The FE software ANSYS is used in this study together with the self-written supplemental programs for 
multi-scale modeling and analysis of the transmission tower structure.  
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Figure 2.2 Multi-scale model of a transmission tower 
 
For the sake of a clear demonstration, only one typical and most important tower joint between the crank arm 
and the tower body is selected to construct a detailed local FE joint model (see Figure 2.2b). The selected joint 
consists of 9 angle members of a shortened length, 3 gusset plates and 40 bolts. In order to accurately simulate 
the bolt connection, all the components of the joint are modeled using solid elements. Consequently, the 20-node 
SOLID95 elements of higher order, which can simulate irregular shapes with no loss in accuracy, are used to 
model angle members, gusset plate and bolts of the selected joint. Apart from this joint, all other members of the 
tower are modeled using beam elements and all other joints are modeled as rigid joints. The completed 
multi-scale model of the transmission tower is shown in Figure 2.2a together with the local joint model and the 
bolt connection shown in Figure 2.2b and Figure 2.2c respectively. It is noted that there is an interface for each 
of 9 angle members used in the joint between the global tower model and the local joint model. The interface of 
the angle member between the solid and beam elements is coupled by using the proposed interface coupling 
method. Another complex problem in the local modeling of the joint is the interaction between different 
components for bolt connection, such as the contact between the bolt and the angle member, the contact between 
the bolt and the gusset plate, and the contact between the angle member and the gusset plate. These interactions 
are achieved by using the contact elements TARGE170 and CONTA174 of surface-to-surface type, which avoid 
one element to penetrate into another. Furthermore, these contact elements can simulate friction forces between 
the two surfaces according to the Mohr–Coulomb law. 
 
3. MULTI-SCALE MODEL UPDATING 
 
Although there is less uncertainty in the multi-scale model than in the conventional FE model, multi-scale model 
updating shall be performed to ensure the quality of the multi-scale model of the transmission tower at both 
macro and micro levels. A multi-scale model updating method using the multi-objective optimization and 
Kriging method is therefore presented in this section. 
 



3.1. Parameters and Objective Functions of Multi-Scale Model Updating 
 
In FE model updating, a set of key parameters of the structure is updated by means of minimizing the objectives 
formed by the residuals between the experimental and FE analytical results of dynamic characteristics and/or 
responses. Compared with conventional FE model updating, the multi-scale model updating requires the 
updating of both global and local models simultaneously. Thus, the updating parameters are selected from both 
global and local models. In this study, the global parameters of the structure refer to the elastic moduli of angle 
members, the densities of angle members, and the lumped masses at the rigid joints. The local parameters refer 
to the elastic moduli of gusset plates and bolts and the densities of gusset plates and bolts of the selected local 
joint. Accordingly, the structural responses used to calculate the residuals are classified as either global 
responses or local responses. In this study, the dynamic characteristics and the static responses of displacement 
and strain from the global model are regarded as global characteristics or global responses while the strain 
responses of the selected local joint are taken as local responses. 
 
Multi-objective optimization algorithm is developed to deal with the minimization of a vector of objective 
functions subject to a number of constraints or bounds. A multi-objective optimization problem (MOP) is 
formulated as follows: 

1 2minimize (θ) { (θ), (θ), ..., (θ)}

subject to θ θ θ

q
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                    (3.1) 

where θ is the vector of updating parameters; θl and θu are the lower and upper bounds of θ; and J(θ) is a vector 
of objective functions. It should be noted that the optimality of MOP is not obvious because a solution θ that 
simultaneously minimizes all sub-objectives does not generally exist. Instead, the Pareto optimality is used to 
characterize the objectives. The Pareto optimality is a solution in which it is impossible to make any one 
objective better off without making at least one objective worse off. Here, the preferred FE model is selected by 
using the residual of each Pareto optimal solution. The solution with the minimum residual is selected as the 
preferred FE model with the updated parameters. In this study, non-dominated sorting genetic algorithm-II 
(NSGA-II) is employed for the implementation of multi-objective optimization to find the Pareto optimal 
solution. In the algorithm NSGA-II, the objective functions are calculated for every iteration process. Therefore, 
the multi-scale analysis of the structure is required to be carried out for each iteration process, which needs huge 
computation time. To reduce the computation effort of the model updating, the Kriging meta-model is built and 
used to replace the multi-scale analysis in the iterative optimization process. In the Kriging meta-model, the 
unknown functions are the residuals of displacements, strains, natural frequencies and MAC. The variables are 
updating parameters, such as elastic modulus and density. 
 
3.2. Multi-Scale Model Updating of the Transmission Tower 
 
Based on the test types and results of the transmission tower, the multi-objective optimization model is 
established for multi-scale model updating, which consists of objective functions, constraints and updating 
parameters. Firstly, the 31 residuals of displacements, strains, natural frequencies and MACs are calculated. The 
3 objective functions are defined by these residuals as follows: 
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where 1( )J x and 2( )J x are the global objective functions; and 3( )J x is the local objective function. The selection 

of effective updating parameters is a crucial step in model updating. It is impractical to associate one updating 
parameter with each element. Here, one model parameter is used for all the angle members with the same 
thickness. The sensitivities are then used for the selection of parameters, in which parameters with lower 
sensitivity are eliminated. As a result, a total of 13 updating parameters are selected. The selected updating 
parameters refer to 7 elastic moduli, 4 densities and 2 lumped masses.  
 
The updating results show that the maximum change in all the updating parameters is 16% of the equivalent 
modulus of elasticity of the gusset plates. This is because the strain responses of the gusset plates predicted by 
the initial model have the largest error compared with the test results. Furthermore, there is only one updating 
parameter with a change more than 10% among the seven updating parameters of elastic modulus, but there are 
four updating parameters with a change more than 10% among the six updating parameters of mass (including 



densities and lumped masses). This is because the masses of the gusset plates and bolts are about 15.6% of the 
total mass of the transmission tower but it is difficult to accurately estimate the masses of the gusset plates and 
bolts. Both the initial and updated multi-scale FE models of the transmission tower are used to calculate the 
strain and displacement responses of the tower under the concentrated load. The results from the initial and 
updated multi-scale model are then compared with those from the static tests. The comparison results of the 
displacement responses show that the results obtained from the updated multi-scale model are closer to the test 
results compared with those from the initial model. The comparison results of strain responses manifest that the 
strain responses of the main angle members of the local joint calculated from the updated multi-scale model are 
more accurate than those from the initial model. The maximum errors of strains from the initial and updated 
multi-scale models are 30.37% and 9.77%, respectively, compared with the test results. The modal analysis is 
also carried out using the initial and updated multi-scale models of the transmission tower. The natural 
frequencies are obtained and compared with the test results. The maximum errors using the updated multi-scale 
model occurs at the sixth natural frequency with a relative error of 5.41%. The maximum error of the 
frequencies of the initial model is 6.98% for the third mode of vibration. 
 
4. MULTI-TYPE SENSOR PLACEMENT 
 
This section investigates a practical and challenging problem on how to place multi-type sensors with the aim of 
best reconstruction of multi-scale responses at key locations. Given that strain measurement sensors are usually 
used to record local responses, whereas displacement and acceleration responses are applied to obtain global 
responses such as natural frequencies and mode shapes, the three types of sensors commonly used in SHM, 
namely, accelerometers, strain gauges and displacement sensors, are considered. The locations of the multi-type 
sensor system are optimized simultaneously, and the measurements from the three types of sensors are 
integrated to reconstruct the structural responses of the structure at key locations with the Kalman filter 
algorithm. The posteriori error covariance is selected as a performance measure of reconstruction accuracy in the 
optimization [Error! Reference source not found.]. A simply-supported overhanging steel beam is analyzed as 
a case study. 
 
4.1. Framework 
 
The modally reduced order model of a structure with a proportional damping can be described by the following 
time-invariant continuous state space equation in modal coordinate as 
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By including the modeling error and measurement noise, the continuous-time state space model in Eq. (4.1) can 
be transferred into a discrete-time state space model as 
 

1k d k d k k

k d k d k k

   

  

x A x B u w

y C x D u v
                               (4.2) 

where   2r
k k t  x x is the discrete-time state vector with t being the sampling interval;  ~ 0,k Nw Q and

 ~ 0,k Nv R represent the independent, white Gaussian modeling error and measurement noise vectors, 

respectively. The Kalman filter gives an unbiased and recursive algorithm to optimally estimate the unknown 
state vector of a linear dynamic system [3] as: 
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in which my denotes the sensor measurements; m
dC and m

dD are composed of the mode shapes with measured 

DOFs; and kG is the Kalman gain. The reconstructed responses at the key locations are then 
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e
dC and e

dD are composed of modal shapes corresponding to DOFs of the key location, where no sensors are 

installed. The accuracy of the reconstructed responses can be measured by the reconstruction error kδ as  
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The response reconstruction error covariance matrix is  
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where x
kP is the posteriori state error covariance of state vector at a time step. The number and location of sensors 

are optimally designed by selecting the proper output matrix m
dC and transmission matrix m

dD to minimize the trace 

of stable reconstruction error covariance matrix. Notably, the output influence matrix e
dC or m

dC tends to be 

highly ill-conditioned because the strain, the displacement and the acceleration have significantly different 
orders of magnitude. Thus, the reconstruction errors are normalized as  
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where Re is covariance matrix of different type measurement noise. The objective and constraint functions of the 
sensor location selection can be expressed as 
 

                           2min min ( )e e T
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4.2. Case Study 
 
A simply-supported overhanging steel beam is modeled as a two-dimensional Euler-Bernoulli beam, constrained 
by a hinge support and a roller support (see Figure 4.1). The model consists of 40 elements and 41 nodes with a 
total of 123 DOFs. The effect of the exciter on the beam is modeled by a mass element and a spring element in 
the FE model. The first seven frequencies are 6.03, 8.42, 17.73, 41.60, 64.42, 71.75, and 101.14 Hz. 
 

 

Figure 4.1 FE model of simply-supported overhanging beam (unit: mm) 
 
All the element strains, nodal vertical displacements, and accelerations, except for the locations at supports, are 
considered as the key responses to be reconstructed. They are also regarded as initial candidate locations for 
sensors. Thus, totally 118 sensor locations are selected as the initial candidates, including 40 for strain gauges, 
39 for displacement transducers, and 39 for accelerometers. The strain gauges are assumed to be attached on the 
upper face at the center of each element; displacement transducers and accelerometers are installed vertically on 
the structure. A random force with frequency ranging from 0.5 Hz to 100 Hz is applied to node 18 to generate 
structural vibration. The first seven modes are selected to determine the number and optimal locations of the 
multi-type sensors and reconstruct the multi-scale responses with the proposed method. The standard deviations 
of the measurement noise for the strain gauge, displacement transducer, and accelerometer are assumed as 0.201, 
0.01 mm, and 0.189 m/s2, respectively. 

 
Figure 4.2 Variation of reconstruction errors with number of sensors 

 
Figure 4.2 shows variation of reconstruction errors with number of sensors. With the decrease in the sensor 
number,

 
the errors increase. By selecting an allowable response reconstruction error, the type, number and 

optimal location of the sensors can be determined. In this case study, 11 sensor locations are selected, including 
five locations for strain gauges, two for displacement transducers, and four for accelerometers, as shown in 
Figure 4.3.  



 
 

Figure 4.3 Sensor locations on the simply-supported overhanging beam 
 
Further studies clearly indicate that the heterogeneous fusion of data from multi-type sensors provides a more 
detailed and accurate reconstruction of multi-scale structural responses, which can provide comprehensive 
information for SHM of large civil structures with limited number of sensors. The experimental work carried out 
on the same beam also confirms the theoretical results [2]. 
 
5. MULTI-SCALE DAMAGE DETECTION 
 
This section provides a multi-scale damage detection method in conjunction with response reconstruction. 
Radial-basis-function (RBF) network is adopted to estimate the strain and displacement mode shapes of the 
structure at the unmeasured locations based on the information measured by the sensors. The natural frequencies 
and mode shapes given by the RBF network are then used for the response reconstruction. The differences in the 
reconstructed responses between the undamaged and damaged structure are finally used to identify the damage 
location and extent. A simply-supported overhanging steel beam is analyzed to demonstrate the superiority of 
the proposed damage detection method. 
 
5.1. RBF	Network	for	Response	Reconstruction	of	Damaged	Structure 
 
It can be proved that RBF network is capable of providing arbitrarily good approximation to any prescribed 
function using only a finite number of parameters [4]. The output of the network is a function of the input vector 
and it is given by 

       
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N
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 x x                                  (5.1) 

where N is the number of neurons in the hidden layer; ic is the center vector for neuron i; iw is the weight of 

neuron i in the linear output neuron; and  is named as the radial basis function that depends only on the 
distance from a center vector and it is radially symmetric about that vector. The input of the network is the 
frequencies and mode shapes of the damaged structure at the sensor locations, which can be extracted by 
experimental model analysis (EMA) from the measured data. These data are then used to train the BRF network 
to estimate the strain and displacement mode shapes of the structure at the unmeasured locations. The response 
reconstruction method presented in Section 4 is finally used to estimate the responses of the structure at the 
unmeasured locations. The flow chart of response reconstruction of the damaged structure is shown in Fig. 5.1. 
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Figure 5.1 Flow chart of response reconstruction of damaged structure 
 
5.2. Response Sensitivity-Based FE Model Updating and Damage Detection 
 
Since dynamic response is a nonlinear function of damage parameter θ , an iterative procedure using a 
gradient-based optimization can be employed to obtain the damage parameter as 

    1k k k  S θ Y                                      (5.2) 

where    k k k   S S θ Y θ θ is the sensitivity matrix for the k-th iteration with  k k
ij i j  S Y θ θ ; 

 k k
d a  Y Y Y θ is the response residuals between the damaged and undamaged structure; and

1

k
k l

l

 θ θ is the 

cumulative damage parameter in all the k-th iterations. kS and kY are assembled by stacking the columns of 
sensitivity sequences and response discrepancy sequences, respectively. A strategy of sparse regularization is 
used to find the solution of Eq.(5.2) since damage usually occurs at very few components or locations of a 
structure.  

AccelerometersDisplacement transducers Strain gauges



5.3. Case Study 
 
The simply-supported overhanging steel beam discussed in the last section is used as a case study. A broadband 
stochastic force with a frequency bandwidth ranging from 2 Hz to 82 Hz and a standard deviation of 30 N is 
applied on node 18 vertically. The first two modal damping ratios are set as 1 2 0.01   . Time step is 1/500s 

and sample duration is 12s. Noise corruption is simulated by adding normally distributed random noise to the 
noise-free response. The noise amplitude is set as 0.201με , 0.01 mm and 20.04 m s for strain, displacement and 

acceleration, respectively, according to the laboratory measurement data. The signal-noise-ratio (SNR) is 
approximately 2%~3% .  
 
The damage is simulated as the reduction of elastic modulus of the element. A case of 12% reduction of elastic 
modulus of element 7 and 23% reduction of element 23 is employed here to represent a multi-damage scenario 
to investigate the effectiveness of the proposed multi-scale damage detection method with and without response 

reconstruction. Damage can be modeled as  
1

1 0
Ne
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    K K K  while inertial properties are assumed 

unchanged before and after damage.  

 
(a) with response reconstruction                   (b) without response reconstruction 

 
Figure 5.2 Damage identification result 

 
The final damage identification results with response reconstruction are shown in Figure 5.2. For the sake of 
comparison, the results of damage identification without response reconstruction, namely, only the responses at 
11 sensors are used, is also presented in the figure. It can be observed that without response reconstruction, 
although the damage on element 7 is almost correctly identified, the damage on 23 is falsely located at the 
adjacent element 24. Besides, there are remarkable positive-errors in element 21 and element 25. The results 
indicate that the proposed method has certain superiority over the immediate utilization of responses recorded by 
limited sensors. 
 
6. CONCLUSIONS  
 
The multi-scale structural health monitoring (SHM) technologies for large civil structures have been presented 
in this paper. The accuracy of the proposed technologies has been validated by conducting various experimental 
studies. The findings from this study advance the existing SHM technologies, allow possible damage detection 
of large civil structures, and enhance our ability to ensure the functionality and safety of structures. 
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