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ABSTRACT  

It is predicted that energy consumption will increase by 56% between year 2010 and 2040. To cope with this 

upcoming energy demand, innovative technologies have been developed in recent decades to harvest energy from 

the environment such as wind, solar, tide and vibration. Harvesting energy from structural vibration presents two 

major challenges: efficiency and vibration control. In particular, vibration could be of low and potentially time-

varying frequency for large-scale structures. Harvesting energy effectively under such circumstances requires high 

efficiency transducers and electrical circuits to reduce losses during energy conversion. Most of the previous 

research however adopted a resistance-inductance model for the electrical circuits which cannot portray the 

inherent nonlinearity of these electrical circuits. In this study, the nonlinear behavior of a typical energy harvesting 

circuit, the Standard Energy Harvesting Circuit (SEHC) is modeled. The effect of electromechanical coupling 

between this energy harvesting circuit and a single-degree-of-freedom structure is then analyzed with the aid of 

dimensional analysis (DA). The energy dissipation capability and the energy harvesting efficiency of the coupled 

system are then discussed. An analytical solution for a weakly coupled system under steady-state harmonic 

excitation is further derived to provide a quick suggestion on the design of an efficient energy harvester for civil 

engineering structures. 

 

KEYWORDS: Vibration energy harvesting, electromechanical coupling, energy harvester design, dimensional 

analysis, nonlinear dynamic.  

 

 

1. INTRODUCTION 
 

It is predicted that energy consumption will increase by 56% between year 2010 and 2040 (U.S. Energy 

Information Administration, 2013). To tackle this challenge, harvesting energy from the environment such as 

wind, solar, tide, as well as structural vibration is investigated in these recent decades. Elvin et al. (2006) studied 

the possibility of using piezoelectric harvester to scavenge energy from various loading conditions. He showed 

that piezoelectric harvester with a volume of 20 to 200 cm3 is capable to supply energy for a 5 cm3 wireless sensor 

under dynamic wind and traffic loading. Ali et al. (2011) investigated the energy harvested from highway bridges 

under moving vehicle load. The feasibility of harvesting energy under wind load excitation from the Vincent 

Thomas Bridge was studied by Miao (2013) using a linear resonant device. Shen and Zhu (2012) developed a 

self-power vibration control and monitoring system (SVCM) capable of harvesting sufficient energy for wireless 

sensor applications while mitigating the vibration of the structure at the same time. They studied the application 

of a dual function electromagnetic (EM) damper for the stay cables of a cable-stayed bridge under wind excitation 

(Shen and Zhu (2014)). The aforementioned studies show that harvested power from regular events is potentially 

sufficient to provide energy for a structural health monitoring system. 

 

Harvesting energy from structural vibration however presents two major challenges (Zuo and Tang 2013): 

efficiency and vibration control. Harvesting energy requires high efficiency transducers and electrical circuit 

interface in order to reduce losses during energy conversion. For large-scale structures, vibration could be of low 

and time-varying frequency which makes energy harvesting inefficient. To improve the efficiency and flexibility 

of the circuit interface, abundant research studies related to electronic circuit topology have been reported (Caliὁ 

et al. 2014, and Li et al. 2013b). Guyomar and Lallart (2011) developed the Series Synchronized Switch 

Harvesting on Inductor Circuit to improve the harvested power from piezoelectric energy harvester. A much more 

advanced energy harvesting circuit topology, the Double Synchronized Switch Harvesting was developed by 

Lallart et al. (2008). Lefeuvre et al. (2005), Arroyo and Badel (2012) proposed the Synchronous Electric Charge 
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Extraction circuit to improve the harvested power from the piezoelectric energy transducer. Pros and cons of these 

harvesting circuits can be found in the review by Guyomar and Lallart (2011). 

 

 
 

Figure 1.1 Schematic Drawings of Simplified Structure-harvester System: Linear Elastic SDOF Structure and 

Simplified Circuit (SC) Interface.  

 

The aforementioned circuit topologies could generate strong nonlinear electromechanical behavior for the 

harvester. Some researchers chose to model the circuit interface as a simplified circuit (SC), as shown in Fig. 1.1 

(Li et al. 2014, Dai et al. 2015, Jung et al. 2011). In that case, the nonlinearity of the circuit interface is neglected 

to simplify the analysis. This simplified circuit cannot portray the nonlinear behavior and could cause problems 

if the response of the structure-harvester system cannot be predicted accurately. In this paper, the nonlinearity 

relating to the electromechanical coupling of a typical energy harvesting circuit topology, the Standard Energy 

Harvesting Circuit (SEHC) (see Fig. 2.1), is studied.  

 

This paper is organized as follows: first, Section 2 presents a comprehensive mathematical modeling of the 

coupled structure-harvester system. The response of the coupled system is then analyzed with the aid of 

dimensional analysis (DA) and the results are shown in Section 3. Section 4 provides an analytical method to 

investigate a weakly coupled system under steady state condition. Comparison between the SEHC and the SC 

modelling is presented with some discussion in Section 5. The important findings of the previous sections are 

summarized in Section 6. 

 

 

2. MODELING OF STRUCTURE-HARVESTER SYSTEM 
 

2.1 Structure Model 

 

 
 

Figure 2.1: Schematic Drawings of Structure-harvester System: Linear Elastic SDOF Structure and Standard 

Energy Harvesting Circuit (SEHC). 

 

Assume that the structural system can be effectively modelled as a Single Degree of Freedom (SDOF) oscillator, 

as shown in Fig. 2.1. An EM harvester is attached to the structure in parallel with a linear elastic spring and a 

linear viscous damper. The equation of motion is: 
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𝑚𝑠�̈� + 𝑐𝑠�̇� + 𝑘𝑠𝑢 + 𝐹𝑒𝑚 = −𝑚𝑠�̈�𝑔 (2.1)  

 

where 𝑢 is the relative displacement of structure with respect to ground, 𝑢𝑔 is the absolute ground displacement, 

𝑚𝑠, 𝑐𝑠 and 𝑘𝑠 are the mass coefficient, the inherent viscous damping coefficient and the stiffness coefficient of 

the structure, respectively. According to the Faraday’s Law, when there is a change of magnetic flux (�̇� ≠ 0), an 

induced current 𝑖𝑖𝑛  and a back electromotive force (emf) 𝑣𝑖𝑛  are generated. Simultaneously, according to 

Lorentz’s Law, an electromagnetic force 𝐹𝑒𝑚  is produced and acts on the structural system, which can be 

calculated as follows:  

 

𝐹𝑒𝑚 = 𝑘𝑓𝑖𝑖𝑛 (2.2)  

 

where 𝑘𝑓 (N/A) is the force constant which depends on the design of harvester. 

 

2.2 Electrical Model 

 

The SEHC (see Fig. 2.1) consists of an AC-DC converter and a storage element connected in parallel with a 

resistor (an electrical load) (Zhu et al. 2012). This particular circuit interface is chosen as it represents the basic 

configuration of the state of art of advanced circuit interfaces (Caliὁ et al. 2014). Thus it can portray most of the 

important nonlinearity effects of the harvesting circuit interface. We assume that the EM harvester is modelled as 

a voltage source that connect the resistance of coil 𝑅𝑐𝑜𝑖𝑙  and the inductance of coil, 𝐿𝑐𝑜𝑖𝑙  in series (Shen et al. 

2012). Due to the low frequency content of the external excitation in civil engineering application (normally 

smaller than 10 Hz), the inductance of the coil is assumed to be negligible (Zhu et al. 2012, Shen and Zhu 2012). 

This assumption is valid when  𝐿𝑐𝑜𝑖𝑙/𝑅𝑐𝑜𝑖𝑙 ≪ 1/𝑓  where f is the frequency of excitation. Assume that the 

Kichoff’s Current Law holds, the governing equation is: 

 

𝐶�̇�𝑐 +
𝑉𝑐
𝑅
= 𝑖𝑟𝑒𝑐𝑡  (2.3)  

 

where 𝑉𝑐 is the voltage flows through the capacitor, 𝑖𝑟𝑒𝑐𝑡 = |𝑖𝑖𝑛| is the rectified current, 𝐶 is the capacitance 

of the capacitor, and 𝑅 is the electrical load. The AC-DC converter (full-bridge rectifier), which is made by four 

ideal forward biased diodes, is used to rectify the induced current, and its forward-biased voltage, 𝑉𝐷 is a constant 

(Ioinovici 2013). Based on the Kichoff’s Voltage Law, the induced current 𝑖𝑖𝑛 can be evaluated as follows (Zhu 

et al. 2012): 

 

 

𝑖𝑖𝑛 = 𝑖𝑖𝑛(�̇�, 𝑉𝐶) =

{
 
 

 
  
𝑣𝑖𝑛 − (2𝑉𝐷 + 𝑉𝐶)

𝑅𝑐𝑜𝑖𝑙
            𝑣𝑖𝑛 > 2𝑉𝐷 + 𝑉𝐶  

     0                                   |𝑣𝑖𝑛| ≤  2𝑉𝐷 + 𝑉𝐶

 
𝑣𝑖𝑛 + (2𝑉𝐷 + 𝑉𝐶)

𝑅𝑐𝑜𝑖𝑙
        𝑣𝑖𝑛 < −(2𝑉𝐷 + 𝑉𝐶)

 (2.4)  

 

where the induced back emf.,  𝑣𝑖𝑛  can be calculated as follows (Tang and Zuo 2011, Zhu et al. 2012): 

 

𝑣𝑖𝑛 = 𝑘𝑣�̇� (2.5)  

 

where 𝑘𝑣 (V/m/s) is a voltage constant depending on the design of the harvester. Assume that the harvester is 

ideal and the internal heat loss is neglected, hence 𝑘𝑣= 𝑘𝑓 = 𝑘𝑒𝑚 (Zhu et al. 2012, 2013). Substituting Eqs. (2.4) 

and (2.5) into (2.1), together with (2.3), and dividing both side of the equations by 𝑚𝑠 and 𝐶𝑘𝑒𝑚 respectively, 

we obtain the following equation: 

 

�̈� + 2𝜉𝑠𝜔𝑠�̇� + 𝜔𝑠
2𝑢 +

𝑘𝑒𝑚
2

𝑚𝑠𝑅𝑐𝑜𝑖𝑙
𝑔1 (�̇�,

𝑉𝐷
𝑘𝑒𝑚

,
𝑉𝑐
𝑘𝑒𝑚

 ) = −�̈�𝑔 

�̇�𝑐
𝑘𝑒𝑚

+
𝑉𝑐

𝑘𝑒𝑚𝐶𝑅
=

1

𝐶𝑅𝑐𝑜𝑖𝑙
|𝑔1| 

(2.6)  

 

where 𝜉𝑠 = 𝑐𝑠/2𝑚𝑠𝜔𝑠 and   𝜔𝑠 = √𝑘𝑠/𝑚𝑠  are the structural damping ratio and natural frequency, respectively. 

𝑔1 is a function that relates to 𝑖𝑖𝑛. 



 

 

 

3. DIMENSIONAL ANALYSIS 
 

3.1 Dimensional Analysis 

 

 
 

Figure 3.1 (Left) Time history response of two structure-harvester systems with different dimensional quantity, 

but with same dimensionless quantity; (Right) Self-similar response of the structure-harvester systems. 

 

This study employs dimensional analysis to characterize the nonlinear dynamic system of Eq. (2.6). From the 

second equation of Eq. (2.6), we can observe that 𝑉𝑐/𝑘𝑒𝑚 is a function that depends on 1/𝐶𝑅, 1/𝐶𝑅𝑐𝑜𝑖𝑙  and 

𝑉𝐷/𝑘𝑒𝑚. Consider a simple harmonic ground excitation with peak ground acceleration 𝑎𝑔 and period 𝑇𝑔, i.e.  

�̈�𝑔 = 𝑎𝑔 sin𝜔𝑔𝑡, where 𝜔𝑔 = 2𝜋/𝑇𝑔 . The response quantity of interest (i.e. relative displacement,  𝑢) of the 

structure (the first equation of Eq. (2.6)) could be expressed as: 

 

𝑢 = 𝑓(𝜉𝑠, 𝜔𝑠, 𝑎𝑔, 𝜔𝑔, 1/𝐶𝑅, 1/𝐶𝑅𝑐𝑜𝑖𝑙 , 𝑘𝑒𝑚
2 /𝑚𝑠𝑅𝑐𝑜𝑖𝑙 , 𝑉𝐷/𝑘𝑒𝑚   ) (3.1)  

 

A response variable (left hand side of Eq. (3.1)) depends on the 8 independent variables in the right hand side of 

Eq. (3.1) (totaling 1+8=9 variables) that involve two reference dimensions, length L and time T. According to 

Buckingham’s Π theorem (Barenblatt 1996), the number of dimensionless terms is = 9 (variables) – 2 (reference 

dimensions) = 7. Applying the theory of dimensional analysis, the dimensionless response quantity Π is a 
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function of =6 independent dimensionless variables. Accordingly, Eq. (3.1) reduces to: 

 

Π = Φ( 
𝜔𝑠
𝜔𝑔
, 𝜉𝑠,

𝑇𝑔

𝐶𝑅
, 𝑟𝑅 , 𝑉𝐷

∗, 𝜉𝑒𝑐) (3.2)  

where the (dependent) response is  

Π =
𝑢

𝑎𝑔/𝜔𝑠
2
,

�̇�

𝑎𝑔/𝜔𝑠
,

𝑉𝑐
𝑘𝑒𝑚𝑎𝑔/𝜔𝑠

, or 
𝐸𝑜𝑢𝑡

𝑚𝑠𝑎𝑔
2/𝜔𝑠

2
 

and independent variables are 

𝜔𝑠
𝜔𝑔
, 𝜉𝑠 ,

𝑇𝑔

𝐶𝑅
,  𝑟𝑅 =

𝑅𝑐𝑜𝑖𝑙
𝑅

, 𝑉𝐷
∗ =

2𝑉𝐷
𝑘𝑒𝑚𝑎𝑔/𝜔𝑠

and  𝜉𝑒𝑐 =
𝑘𝑒𝑚
2 /𝑅𝑐𝑜𝑖𝑙
2𝑚𝑠𝜔𝑠

   

 

Π is the dimensionless response quantity of interest and 𝑇𝑔/𝐶𝑅 indicates the stability of the capacitor voltage. 

A typical value of 𝑇𝑔/𝐶𝑅 is less than 0.1 to reduce the fluctuation of the capacitor voltage; the value of 𝑟𝑅 is 

typically less than 0.5 and 𝑉𝐷
∗ less than 0.5.  𝜉𝑒𝑐 is the electrical damping ratio provided by the coil. In practice, 

the value of  𝜉𝑒𝑐  alone does not represent the total damping provided by the harvester. It is recommended to 

consider the total damping (Stephen 2005, Tang and Zuo 2011 and Zhu et al. 2012) provided by the coil and the 

electrical load of the harvester, which is defined as  𝜉𝑒𝑡 = 𝑘𝑒𝑚
2 /2𝑚𝑠𝜔𝑠(𝑅𝑐𝑜𝑖𝑙 + 𝑅). Therefore, Eq. (3.2) becomes: 

 

Π = Φ(𝜔𝑠/𝜔𝑔, 𝜉𝑠, 𝑇𝑔/𝐶𝑅, 𝑟𝑅 , 𝑉𝐷
∗, 𝜉𝑒𝑡) (3.3)  

 

In the following, we will use  𝜉𝑒𝑡  (instead of  𝜉𝑒𝑐) to quantify the damping provided by the harvester. In fact, 

 𝜉𝑒𝑡  is a combination of  𝜉𝑒𝑐  and  𝑟𝑅. There is no additional independent variable in the dimensional analysis. 

The total number of independent dimensionless variable remains six. Note that the ratio between 𝜉𝑒𝑡  and 𝜉𝑠, 
( 𝜉𝑒𝑡/𝜉𝑠) indicates the degree of electromechanical coupling between the two subsystems.  

 

Fig. 3.1 demonstrates the time history response of the structure-harvester system with two sets of different 

dimensional term but same set of dimensionless quantities. When the six independent dimensionless quantities 

are the same, responses of the two sets of structure-harvester systems collapse to one curve. It means that the 

dynamic response of the structure-harvester system becomes indifferent to the intensity and the frequency content 

of the excitation. In other words, the system exhibits the property of physical similarity (Dimitrakopoulos et al. 

2010).  

 

 

3.2 Complete Similarity of Self-similar Response 

 

 
 

Figure 3.2 Complete similarity response of structure-harvester systems with dimensionless terms, 𝑟𝑅 and V𝐷
∗ . 

(𝑇𝑔/𝐶𝑅 = 0.06, 𝜉𝑠 = 5%, 𝜉𝑒𝑡 = 5%) 

 
Complete similarity response is sometimes found in nonlinear dynamics system (Barenblatt 1996). The self-
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similar response curves collapse to a “universal” curve when a particular dimensionless term tends to a small or 

large value (e.g. zero). For the structure-harvester system discussed in this paper, complete similarity or (similarity 

of first kind) for the dimensionless products, arises for small values of  𝑟𝑅 and 𝑉𝐷
∗ (Barenblatt 1996). Fig. 3.2 

shows the similar response spectrum of the coupled system under different values of 𝑟𝑅 and 𝑉𝐷
∗. As the values 

of 𝑟𝑅 or 𝑉𝐷
∗ approach to zero, the response of the structure collapse to a finite value. It means that these two 

variables (𝑟𝑅 and 𝑉𝐷
∗) are immaterial to the peak response of the structure. In other words, if a large load resistance 

is used or the forward biased voltage drop of the diodes are small, we can ignore these two variables in the design. 

This finding not only reduces the number of analysis in parametric study but also facilitates the design in practice. 

Note that the response spectra for 𝑉𝐶/(𝑘𝑒𝑚𝑎𝑔/𝜔𝑠) is not shown in this paper for brevity.  

 

 

4. ANALYTICAL METHOD 
 

This section provides an analytical method to estimate the response of the structure. Assuming that the nonlinearity 

of the harvester is not significant and the damping ratio 𝜉𝑒𝑡  of the harvester is small, the steady-state solution of 

the displacement becomes sinusoidal, as shown in Fig. 3.1: 

 

𝑢 = −𝑢𝑚sin(𝜔𝑔𝑡 − 𝜑) (4.1)  

 

where 𝑢𝑚  and 𝜑 are the amplitude of vibration and the phase difference of the relative displacement with 

respect to the excitation. In order to obtain a stable output voltage, a supercapacitor can be used such that 𝑅𝐶 ≫
𝑇𝑔. This allows us to assume that the variation of capacitor voltage over one cycle of excitation is negligible 

(Lefeuvre et al. 2005). Define the capacitor voltage as the nominal voltage (i.e. �̇�𝑐 ≈ 0 and 𝑉𝑐 = 𝑉𝑐,𝑛), integrating 

both sides over one period of excitation, one can obtain: 

 

𝑉𝑐,𝑛 = 𝛽𝑉𝑚𝑎𝑥  

 

where 𝑉𝑚𝑎𝑥 = 𝑘𝑒𝑚𝑢𝑚𝜔𝑔, 𝛽 =
2(√1−𝑎2−𝑎 cos−1 𝑎)

𝜋𝑅𝑐𝑜𝑖𝑙/𝑅
, and 𝑎 =

2𝑉𝐷+𝑉𝐶,𝑛

𝑉𝑚𝑎𝑥
 

(4.2)  

 

To estimate the displacement amplitude of the structure, we first expand 𝐹𝑒𝑚 in Fourier series: 

 

𝐹𝑒𝑚(𝑡) =
1

2
𝑎𝑜 +∑𝑎𝑛 cos (𝑛(𝜔𝑔𝑡 − 𝜑)) + 𝑏𝑛 sin (𝑛(𝜔𝑔𝑡 − 𝜑))

∞

𝑛=1

 (4.3)  

 

where 𝑎𝑖  𝑎𝑛𝑑  𝑏𝑖 are the Fourier series coefficient. Assume that the first order term of Eq. (4.3) governs the 

response (only retain 𝑎1 as 𝑎𝑜 = 𝑏1 = 0), Eq (4.3) then becomes : 

 

𝐹𝑒𝑚(𝑡) ≈ 𝑎1 cos(𝜔𝑔𝑡 − 𝜑) (4.4)  

 

Substitute Eq. (4.4) into (2.1) gives  

 

𝑢𝑚 =
𝑎𝑔/𝜔𝑠

𝑠

√(1 − (𝜔𝑔/𝜔𝑠)
2
)
2

+ (2𝜉𝑠𝜔𝑔/𝜔𝑠 − 𝑎1/𝑚𝑠𝑢𝑚𝜔𝑠
2)
2
 and  𝜑 = tan−1

2𝜉𝑠𝜔𝑔/𝜔𝑠 − 𝑎1/𝑚𝑠𝑢𝑚𝜔𝑠
2

1 − (𝜔𝑔/𝜔𝑠)
2  

(4.5)  

 

Substituting Eq. (4.5) into (4.4), 𝑎1 can be obtained as 

 

𝑎1 = −
2𝑘𝑒𝑚𝑉𝑚𝑎𝑥
𝜋𝑅𝑐𝑜𝑖𝑙

(π − cos−1 𝑎 − 𝑎√1 − 𝑎2) (4.6)  

 

After solving the above transcendental equation for 𝑎1, 𝑢𝑚and 𝜑 can be obtained from Eq. (4.5). 

 

 

5. COMPARISON BETWEEN DIFFERENT MODELLING METHODS 
 

As mentioned before, the simplified circuit (SC) shown in Fig. 1.1 have been used to analyze the coupled system. 



The electromagnetic force provided by the harvester on the structure is: 

 

𝐹𝑒𝑚 = 𝑐𝑒𝑞�̇� (5.1)  

 

with 𝑐𝑒𝑞 = 𝑘𝑒𝑚
2 /(𝑅𝑒𝑞 + 𝑅𝑐𝑜𝑖𝑙) is the equivalent damping coefficient provided by the harvester. Assume that a 

large resistance load is used, such that 𝑅𝑒𝑞 ≈ 𝑅, and 𝑐𝑒𝑞 ≈ 𝑘𝑒𝑚
2 /(𝑅 + 𝑅𝑐𝑜𝑖𝑙). In the following, the difference 

between two modelling methods is discussed. Fig. 5.1 shows the response of the structure under different values 

of  𝜉𝑒𝑡 . The difference in the transient state response between two modelling methods is relatively significant 

when compared to that of the steady state response. This implies that full scale dynamic of the circuit topology 

should be considered for examining the response of the structure under short duration pulses (e.g. impulse 

excitation). When the damping coefficient is small (Fig. 5.1 for 𝜉𝑒𝑡 = 5%), the differences between two modelling 

methods can be neglected under steady state condition. When the coupling coefficient is large (𝜉𝑒𝑡/𝜉𝑠 = 4)  (Fig. 

5.1 for 𝜉𝑒𝑡 = 20%), the differences between two modelling methods are relatively significant. The nonlinearity 

of the harvester has more significant effect on acceleration than on displacement or velocity response. The SC 

model provides an upper bound estimation for all the response parameters of the structure-harvester system. In 

other words, it leads to a conservative design from the structure’s viewpoint, however this overestimation is not 

beneficial, from the viewpoint of energy harvesting.  

 

 
 

Figure 5.1 Time history response of structure-harvester systems with different modelling methods under simple 

harmonic excitation (𝑇𝑔/𝐶𝑅 = 0.03, 𝜉𝑠 = 5%, 𝑉𝐷
∗ = 0.01. 𝑟𝑅 = 0.05). 

 
 

6. CONCLUSION 
 

This paper presented the nonlinearity effect of the circuit topology on the response of the coupled structure-

harvester system under simple harmonic ground excitation. An EM harvester was attached to a SDOF structure 

and connected to a simplest yet realistic SEHC circuit. The behavior of the coupled system was characterized 

using dimensional analysis. Six independent dimensionless quantities were used to simulate the self-similar 
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response of the system. Complete similarity was found in two of the dimensionless products (𝑟𝑅 and  𝑉𝐷
∗). An 

analytical solution was obtained to predict the displacement response of the structure due to the effects of SEHC. 

Furthermore, a comparison between the results obtained with that using a SC circuit was presented. Results show 

that if the damping coefficient 𝜉𝑒𝑡  is low, the SC circuit provides reasonable estimation on the displacement 

response of the structure under steady state condition. However, the SC circuit cannot predict the response under 

transient state accurately.  
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