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ABSTRACT 

Elastomeric bearings have been a mature technique to mitigate the damage of earthquakes on structures. 

However, too many constitutive models for elastomeric bearings lead to a particularly complex analysis and 

design of the isolated structure. This paper developed a general rate-dependent constitutive model which allows 

accurate description of force-displacement relationship for natural rubber bearing (NRB), high damping rubber 

bearing (HDRB) and super high damping rubber bearing (SHDRB). The proposed constitutive model is 

composed of two hyperelastic springs and a nonlinear dashpot element, which following the finite deformation 

viscoelasticity laws based on classical Zener model. Fletcher-Gent effect, high horizontal stiffness at small 

strains causing by the carbon fillers in the elastomeric bearings, is modeled accurately through the additional 

stiffness parameter   in the novel strain energy function. On the basis of conducted laboratory tests including 

multi-step relaxation and monotonic shear tests, a parameter identification scheme is implemented. Finally, by 

comparing the numerical simulation and test results, it is found that the proposed constitutive model is capable of 

well predicting the stress-strain relationship of elastomeric bearings at different strain rates. 
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1. INTRODUCTION 

 

Elastomeric bearings have been widely used as seismic isolators to protect buildings and bridges from 

earthquake damages. Among various types of elastomeric bearings, natural rubber bearing (NRB) and lead 

rubber bearing (LRB) have been well known and the application of them in civil structures has increased 

substantially during the last decades. The NRB uses alternate layers of natural rubbers and steel plates, LRB 

inserts one or more lead plugs into the NRB to enhance hysteretic damping and initial stiffness of the bearing. 

However, because lead material is a toxic substance for environment, the application of LRB will gradually 

diminish in the future. In recent years, two evolving types of elastomeric bearings were invented, named as high 

damping rubber bearing (HDRB) and super high damping rubber bearing (SHDRB). The rubber material of 

HDRB and SHDRB possesses high damping due to the add of chemical fillers including carbon black, 

plasticizer and oil during the vulcanization process.
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Since the acceptance of the performance-based design philosophy, some design specifications [1] recommend 

the use of nonlinear time history analysis for the seismic response assessment of isolated bridges. In those 

specifications, the hysteretic behavior of NRB is approximated by equivalent linear (EL) method, and that of 

HDRB and SHDRB are represented by bilinear model. However, the chemical fillers in rubber make the 

hysteretic behavior of the elastomeric bearings, in particular the HDRB and SHDRB, considerably complicated. 

Therefore, both equivalent linear and bilinear models cannot reproduce the nonlinear elasto-plastic characteristic 

especially the rate-dependent property as found by many researchers [2-3].  

In this paper, a general rate-dependent constitutive law for three types of elastomeric bearings (i.e. HRB, 

HDRB, and SHDRB) under the horizontal shear deformation is established. In formulating the mathematical 

expression of stress-strain function, an improved hyperelastic Zener model is developed and the total stress of 

rubber material is decomposed to rate-independent equilibrium stress and rate-dependent overstress to describe 

the fundamental viscoelastic behavior of the material. Moreover, a range of material tests including multi-step 

relaxation test and monotonic shear test are performed to identify the model parameters. Finally, the numerical 

and experimental results are compared to verify the accuracy of the proposed model. 

 

2. STRAIN ENERGY FUNCTION 

 

According to the phenomenological theory, rubber is assumed as a isotropic and incompressible material, the 

mechanical properties of a rubber can be characterized by its strain energy function W , which can be 

represented in terms of deformation tensor invariants (
1 2 3, ,I I I ),  
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where ( 1,2,3)i i   denote stretches in the three principal directions. 

considering that rubber is incompressible, therefore, 3 1I  , implying that W  is expressed as a function of 1I

and 2I  

There are many proposed strain energy function expressions in the literature, the most general strain energy 

function formulation is proposed by Rivlin [4]. However, most of the published researches are focusing on 

rubber-like materials [5], while the investigation of the behavior of elastomeric rubber material is found only in a 

few works. Therefore, development of an adequate strain energy function applicable to shear deformation is 

aroused by these reasons. In this study, a strain energy function of 1I  and 2I  with an additional stiffness 

correction factor   is proposed as follows: 
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where  ( 1 5)iC i    and   are the material model parameters. 
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3. CONSTITUTIVE EQUATION FOR RATE-DEPENDENT PROPERTY  

 

To model the rate-dependent phenomenon of elastomeric bearings, a Zener model as illustrated in Figure 2.1 

is considered. The hyperelastic spring A represents the rate-independent equilibrium stress, while the Maxwell 

element consisting of a hyperelastic spring B and a nonlinear dashpot C represent the rate-dependent overstress.  

 

 

 

Figure 2.1 Schematic of modified hyperelastic Zener model 

 

the Cauchy stress tensor S  of rubber material is expressed as follows 

 

 
1

1 2

2ij ij ij ij

W W
p

I I


  
   

  
S B B                       (3.1) 

 

where ij  is the Kronecker symbol, and p  is the hydrostatic pressure determined by  the boundary condition. 

For shear deformation, we have 
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the left Cauchy-Green deformation tensor B  and 1
B can be calculated as follow  
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Substituting Eqs.(3.2)-(3.4) into Eq.(3.1), the shear stress component can be given by  
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for equilibrium stress, 
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for overstress, 
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where ieqC , iovC  (i=1~5) , eq  and ov are the material model parameters determined by two responses: the 

first is the equilibrium response and another is the instantaneous response. 

On the basis of Huber and Tsakmakis’ s [6] finding, the rate of Left Cauchy-Green deformation tensor of the 

constitutive model is defined by  

 

                 
2T D

B B A A B B B


  B B L L B B S                        (3.8) 

                                  -1 L F F                                       (3.9) 

 

where  is a positive material viscosity parameter representing the dashpot. The (  ) indicates material time 

derivative and the superscript D denotes the deviatoric component. L  is the velocity gradient tensor defined by 
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combining Eqs.(3.8)-(3.10), the expression of rate of BB  is obtained. 

 

4. MATERIAL TESTS AND PARAMETER IDENTIFICATION  

 

4.1 Specimens and instruments 

 

The test specimen consists of two rubber layers and three steel blocks, it has a net shear area of 2520mm. 

Tests were conducted by using a computer-controlled servo hydraulic loading machine.  

 

4.2 Multi-step relaxation test and monotonic shear test  

 

It is impractical to obtain the equilibrium stress by means of loading tests with an infinitesimally slow loading 

rate. To address this problem, a multi–step relaxation (MSR) test was employed in the experimental scheme to 

obtain the equilibrium stress. In the present study, each rubber material specimen tested up to the specified strain 

levels and held constant with a time interval of 20 minutes, Figure 4.1presents the applied strain history utilized 
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in the test.  

 

 

 

Figure 4.1 Applied strain histories in multi-step relaxation tests 

 

Figure 4.2 shows the resultant stress histories obtained by MSR tests. It is clear seen that at the end of each 

relaxation interval of 20 minutes, each stress history converges to an almost constant value in both specimens. 

By connecting all the minimum stress values at each corresponding strain level, the equilibrium curve can be 

achieved. 

 

     

(a) NRB                     (b) HDRB                   (c) SHDRB 

 

Figure 4.2 Stress time history obtained by multi-step relaxation tests 

 

Theoretically, the instantaneous response can be ideally obtained when the rubber material is loaded at an 

infinitely fast rate. However, the maximum stroke velocity of the displacement controlled device inherently 

limits the loading rate of the specimen. In order to overcome this limitation, a series of monotonic shear tests 

were conducted shown in Figure 4.3. The tests were carried out at four different loading rates up to a maximum 

shear strain range of 200%. The four strain rates of 0.08, 0.8, 1.6 and 4.0 1/s were utilized in the tests correspond 

to frequencies of 0.01，0.1，0.2，0.5 Hz, respectively. The stress response obtained at 4.0 1/s is regarded as the 

neighborhood of the instantaneous response.  
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(a) NRB                  (b) HDRB                     (c) SHDRB 

 

Figure 4.3 Shear stress-strain relationships obtained by monotonic shear tests  

 

4.3 Material parameter identification 

 

The parameters for equilibrium stress component can be determined by applying the least-square method to 

Eq.(3.6) with sets of the equilibrium stress eq  and corresponding shear strain eq  obtained by the multi-step 

relaxation test. The results of parameter identification are shown in Table 4.1.  

 

Table 4.1 Material parameter for equilibrium stress  

 

The value of overstress ov  is obtained by subtracting the equilibrium stress eq  from the total stress 

obtained by the monotonic shear test using the case of 4.0 1/s strain rate case. Parameters iovC  (i=1~5) are 

determined by the least-square fitting method. The identified values of the overstress parameters are listed in 

Table 4.2.  

 

Table 4.2 Material parameter for overstress  

 

The viscosity coefficient   obtained from the tests results is found not to be constant, showing variation 

within the progress of deformation. In this study, the Gaussian function and a 3rd order polynomial function is 

proposed to describe the strain and strain rate dependence of  . 

 

 

 

5. MODEL VALIDATION   
 

To validate the proposed model, numerical simulations are compared with the experimental results. Figure 

Specimen 1 (MPa)eqC  2 (MPa)eqC  3 (MPa)eqC  4 (MPa)eqC  5 (MPa)eqC  

NRB 0.7642 -0.7091 0.3883 -0.0619 0 

HDRB 1.0615 -1.5318 0.9779 -0.1994 0 

SHDRB 2.0347 -3.0981 1.9878 -0.4239 0 

Specimen 1 (MPa)ovC  2 (MPa)ovC  3 (MPa)ovC  4 (MPa)ovC  5 (MPa)ovC  ov  

NRB 0.3561 -0.4315 0.4666 -0.1399 0.0141 -0.35 

HDRB 1.1306 -1.0488 0.7869 -0.2551 0.0264 -0.35 

SHDRB 1.7699 -2.0761 1.7718 -0.7801 0.1346 -0.35 
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5.1-5.3 indicate the different strain-rate cases and it is found that all simulated values are well described the 

rate-dependent response at moderate and large strains along with high stiffness feature at small strains. 

 

   

(a) Strain rate of 1.6 1/s               (b) Strain rate of 0.8 1/s 

 

Figure 5.1 Comparison of numerical simulation and monotonic shear test results of NRB 

 

   

(a) Strain rate of 1.6 1/s               (b) Strain rate of 0.8 1/s 

 

Figure 5.2 Comparison of numerical simulation and monotonic shear test results of HDRB 

 

   

(a) Strain rate of 1.6 1/s                   (b) Strain rate of 0.8 1/s 

 

Figure 5.3 Comparison of numerical simulation and monotonic shear test results of SHDRB 

 

6. CONCLUSIONS  

 

This study proposed a general mathematical expression to accurately represent the rate-dependent 
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force-displacement relationship of three types of elastomeric bearings. Comparing the simulations using the 

model with test results, it is concluded that the proposed model can reproduce the behavior of elastomeric 

bearing accurately. 
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