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ABSTRACT  
Detection of damage in structures and infrastructure systems is the main objective of Structural Health 

Monitoring projects. Data-driven procedures constitute one category of structural damage diagnosis methods 

where signal processing or time series techniques are employed on the measured responses to establish damage 

sensitive features. Then a statistical framework is used to evaluate the significance of potential changes in the 

extracted features.  

This paper presents several data-driven damage identification methodologies. In these algorithms, feature 

extraction is completed by applying general regression models to data collected through clusters of sensors. For 

systems with linear topology, substructural regression modeling is also performed on time- and 

frequency-domain transforms of the measured signals to estimate local stiffness of the structure as damage 

features. Subsequently, change point analysis is utilized to statistically determine the significance of changes in 

the extracted features in order to distinguish between changes caused by damage or environmental factors and 

measurement noise. A toolsuite is developed that facilitates application of such data-driven damage detection 

algorithms and improve the reliability of the diagnosis results by offering several combinations of regression 

models, damage features, and statistical tests to process the monitoring data.  

Blank line 10 pt 

KEYWORDS: structural health monitoring, damage detection, change point analysis, data-driven, damage 

feature  
Blank line 10 pt 

Blank line 10 pt 

1. INTRODUCTION  
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Detection of early stage damage in the constructed structures and infrastructure systems is one of the central 

goals in Structural Health Monitoring projects. This goal is accomplish through comparison of structural 

properties or features from an unknown structural health condition with those from a known and presumably 

undamaged state of the system. The damage detection algorithms can be categorized into physics-based and 

data-driven techniques based on the underlying model that are used to extract damage sensitive features for this 

comparison. In the first category of these methods, Finite Element (FE) calibration techniques are employed to 

update uncertain parameters of an FE model [1-4]. The calibration is performed with data from different states 

of structure to investigate whether model parameters would deviate from their baseline. While such damage 

detection methods can be computationally expensive, they could be advantageous by providing information 

about the severity of damage in addition to its occurrence and location. In the second category, however, 

damage identification is performed as outlier detection on features from the structural response extracted 

through signal processing or time series techniques [5-8]. Then a statistical framework is used to evaluate the 

significance of potential changes in the extracted damage features. Such data-driven techniques have gained 

significant attention due to their low computational burden, as well as their capability to signify highly localized 

damage scenarios in the structure. This paper presents several data-driven damage identification methodologies 

to analyze univariate and multivariate monitoring datasets. Next section describes the mathematical models used 

to create damage sensitive features from the measured structural responses.  
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2. DATA-DRIVEN DAMAGE FEATURES 
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2.1. General regression models 
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Application of time series regressive models in damage feature extraction has shown promising results in SHM 

research [9-11]. One of the time series models used for this purpose is Auto-regressive (AR) model which 

establishes a relationship between past and present samples of a signal. This model is shown in Eq. 2.1, where p, 



αp and ε denote the order, regression coefficients, and residuals of the (AR) model, respectively. Functions of 

regression coefficients as well as the residuals have been used as damage sensitive features in previous research 

[12-13]. These models are beneficial mainly because they can be used on univariate measurements possibly to 

detect occurrence of a change in structure’s behavior. With the use of multivariate sensor networks, performance 

of these models can be extended to localizing the damage as well. 
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AR models can be extended to Auto-regressive models with exogenous (ARX) input term as shown in Eq. 2.2. 

These models establish a relationship between two signals: input (yi) and output (yj) of the model. This 

definition can be employed to relate responses from two locations on the structure to create damage features 

[14].  
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2.2. Substructural regression models 
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The band-limited characteristics of mass, stiffness, and classical damping matrices in structural systems with 

linear topology (i.e. shear building and bridge systems) can be used to estimate the stiffness properties from 

measured response signals, and therefore detect possible damage in form of local stiffness reduction [15]. In 

such type of structures, Eq. 2.3 holds for the response measurements at floor i-1, i, and i+1. Therefore, given the 

mass of middle node (mi), its excitation, as well as acceleration response, displacement, and velocity of the three 

neighboring nodes, the stiffness parameters are estimated through regression.  
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Since excitation is often not available, Eq. 2.3 can be rewritten in form of Eq. 2.4 by taking the correlation of 

both sides of Eq. 2.3 with middle node acceleration response (�̈�𝑖) to eliminate pi term. In this equation, τ is a 

positive time lag.     
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This formulation can be used in time- and frequency-domain to estimate stiffness and damping parameters. The 

estimation process has lower computational cost in the frequency-domain, since in the time-domain formulation 

displacement and velocity responses – when unavailable – are reconstructed from acceleration signals, whereas 

in the frequency-domain formulation they are turned into regression constant [15].   
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3. CHANGE POINT ANALYSIS 
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When damage sensitive features are created, statistical frameworks are needed for outlier detection. This section 

reviews some of the statistics that can be adopted to test the significance of change in damage features and 

distinguish between changes that are result of damage and common changes due to environmental factors and 

measurement noise. These change point statistics are mainly used to test any potential change in the mean of the 

vector of observations; here a vector of damage sensitive features with N elements (Xm where m=1,2,..,N). Eq. 

2.5 shows Cumulative Sum (CUSUM) statistics that calculates sum of the differences between each observation 

and their overall average. This statistics start at zero (S0=0) and eventually goes to zero. An upward slope in 

CUSUM chart indicates a period when observations tend to be above the average, whereas a downward slope 

shows that observations are less than the average. Therefore, a distinct change in the slope of CUSUM plot 

signifies a change in the vector of features [16, 17]. 
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Another change detection statistics is Exponential Weighted Moving Average (EWMA), shown in Eq. 2.6. This 

statistic finds a weighted average of all the previous observations, every time a new observation is monitored. 

The weight is applied by parameter , which is typically set between 0.05 and 0.25. Z0 is an estimate of 

in-control process mean usually calculated based on historical data. Zm statistics are compared to an upper and 

lower control limits (UCL, LCL) based on the mean and variance of in-control process. This statistics is 

different from the others discussed here in that it can be used for online change detection, since it does not use 

the information from the entire vector of observations [16, 17].  
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Mean Square Error (MSE) is another change statistics shown in Eq. 2.7. MSEm finds how well two splits of the 

data made at the m
th

 observation (1< m< N-1) would fit their estimated averages. In effect, the point where MSE 

shows a V-shaped global minimum indicates a change point in the vector of observations [17]. 
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Another method to test potential changes in the mean of the damage features is by establishing a test statistics 

which follows a Student’s t-distribution with N-2 degrees of freedom. There are three assumptions for this 

formulation: (1) samples come from a parent population that is normally distributed, (2) the two sample groups 

are from populations with equal variances, and (3) sample observations are independent. Eq. 2.8 shows the 

details of this statistics. In this equation Spm denotes the pooled standard deviation of two splits of the vector of 

observations [14].  
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Finally, a test statistic can be established based on the maximum likelihood function of observations. This 

statistics which is described in Eq. 2.9 and 2.10, finds the difference between maximum likelihood function of 

the vector of observations with those from its two segments creating through a split at the m
th

 observation. In 

Eq. 2.10, 𝑙𝑛1:𝑛2 denotes the maximum likelihood function of observations from Xn1 to Xn2 (n2 > n1) whose 

variance is �̂�𝑛1𝑛2
2
. This statistics is first normalized by estimated expected value of in-control statistics to create 

normalized likelihood test statistics (NLRT), and then is compared with a control limit based on 𝜒2 distribution 

[14]. 
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4. DIT: DAMAGE IDENTIFICATION TOOLSUITE 
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As described in the previous sections, several damage features, and change point statistics can be established 

once structural responses are collected at monitoring intervals. Since in data-driven damage detection, a critical 

step is to infer about occurrence and location of damage by statistically analyzing the extracted features, it is 

expected that using combination of different features and tests improve the accuracy of the damage diagnosis 

procedure. Therefore, a Matlab-based data-driven damage identification toolsuite (DIT) is developed to 

facilitate comparison of several damage identification techniques described earlier. DIT offers several change 

point statistics to be created from damage features for which control threshold is constructed using resampling 



methods (bootstrapping and permutation) as well as test of significance when applicable [18].  Fig. 4.1 displays 

this toolsuite which will be described in more details in the following sections through examples of a simulated 

bridge model, and a scaled two-bay steel frame. DIT can be downloaded from dit.atlss.lehigh.edu.   
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Figure 4.1 DIT main windows  
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5. DAMAGE DETECTION IN A SIMULATED BRIDGE STRUCTURE  
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This section presents the damage detection in a shear bridge model with 30 degrees of freedom (dof) and 31 

elements. Random excitations were applied on the dofs of the bridge model so they vibrate with 0.05g 

acceleration standard deviation. In order to consider the instrumental noise, a 5% random white noise signal was 

added to each acceleration signal. Damage in the model was simulated by 25% reduction in stiffness of 9
th

, 10
th

, 

21
st
, and 22

nd
 elements. Twenty sets of simulation were performed on healthy and damage configuration of the 

bridge model. The simulated datasets along with the nodal mass string were imported to DIT for feature creation 

and change point analysis. For this example, with assumption of known mass, substructural regression model in 

frequency-domain was selected to estimate the local stiffness parameters as damage features. Vectors of damage 

sensitive features were then tested to find any possible change in their means.  

The change detection analysis showed clear change points for the statistics related to 9
th

, 10
th

, 21
st
, and 22

nd
 

elements. Fig. 5.1 shows EWMA control charts for stiffness parameters of 2
nd

, 9
th

, and 26
th

 elements along with 

their control limits. In calculating this statistics it was assumed that the features from first 10 simulations were 

coming from a reference (known) state. This assumption was used to estimate the mean and standard deviation 

of the in-control process. Fig. 5.1 shows that this statistics is successful in identifying the time (i.e. 21
st
 test) and 

location of damage. The estimated stiffness parameters were also tested through CUSUM control charts. The 

results are presented in Fig. 5.2 showing a clear change point is detected in the statistics of the damaged 

elements. Through DIT the tests statistics can also be compared with thresholds based on permutation or 

resampling of the vector of observations. Fig. 5.2(b) and (c) show the CUSUM statistics of 22
nd

 and 26
th

 

stiffness parameters over the statistics from 1000 bootstrapped samples. It is seen that for the 22
nd

 element other 

thresholding methods confirm the occurrence of damage, whereas for the statistics of 26
th

 element when damage 

thresholds are set based on bootstrapping methods, there is not enough evidence to infer the change. 
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Figure 5.1 EWMA control charts for estimated local stiffness of the bridge model:  

(a) 2
nd

 element, (b) 9
th

 element, and (c) 26
th

 element    
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Figure 5.2 CUSUM control charts for estimated local stiffness of the bridge model:  

(a) all the elements, (b) 22
nd

 element, and (c) 26
th 

element    
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6. DAMAGE DETECTION IN A SCALED STEEL FRAME 
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This section presents the damage detection process on a two-bay steel tube frame test-bed constructed at the 

laboratory of Advanced Technology for Large Structural Systems at Lehigh University. This frame (shown in 

Fig. 6.1) was built as a test-bed for damage detection, mainly to represent typical building frames or bridge 

girders. It has nine interchangeable sections, 0.2m in length that can be changed throughout the frame in order to 

simulate damage. These interchangeable sections have different cross-sectional properties than the healthy state 

which correspond to 20% reduction in member stiffness. The specimen was instrumented with 21 wired 

accelerometers, labelled in Fig. 6.2 with L, C or R on left, center and right portions of the frame. In order to 

dynamically excite the frame, impact loading is chosen as the excitation method for this implementation. The 

impact amplitude was limited to ensure that the linear behavior assumption for the experimental frame holds. 

Therefore, the acceleration response of frame is recorded while the frame is struck with a hammer on the right 

column and the frame freely vibrates on its own.  

During testing, there were a total of 40 sets of data collected; 20 runs performed on the healthy configuration of 

the specimen, while 20 run were conducted after the interchangeable section at location of R5 (see Fig. 6.2) was 

switched with a section with less stiffness. Throughout the damage detection process it was assumed that the 

first 10 runs from undamaged system are from a known healthy baseline; therefore, the timing of damage should 

be detected at the 10
th

 runs from unknown state of the system (21
st
 run overall). It should be noted that the data 



measured with sensors L1, C3, C5 and C9 were excluded from the damage detection process, since the 

preliminary inspection of the measured signals revealed their faulty behavior. 
ARX and AR models of order 4 were used for damage feature extraction. In the ARX models acceleration from 

each sensor was paired with the signals from their closest neighbor; therefore, a total number of 15 pairs were 

tested. The regression coefficients of the ARX and AR models were then compressed to create scalar damage 

features such as Mahalanobis distance and angle coefficients [14, 17]. These scalar damage features were then 

tested in the change detection analysis window. Figure 6.3 shows the results of this process with a change 

threshold corresponding to 99% confidence level. This figure shows that ARX-based damage features are 

detecting the damage at its correct time at the 10
th

 run; the maximum t-test statistics and NLRT statistics that are 

above the threshold infer a significant change in the vector of damage features, i.e. damage. It is also seen that 

the statistics from the right side of the frame are considerably larger, and the highest test statistics are form 

R5-R6 sensor pair. Fig. 6.3(c) shows the t-test statistics based on AR coefficients which shows that although the 

statistics imply a significant change at correct timing, damage is not localized to its true location. Since the other 

AR-based features did not indicate any kinds of change, the damage diagnosis based on AR models is not 

successful in this experiment. 
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Figure 6.1 Experimental setup: (a) scaled frame, (b) switch-out member, (c) wired accelerometer 
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Figure 6.2 Sketch of the specimen and location of damage 
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Figure 6.3 Control charts of extracted features: (a) NLRT statistics of the Mahalanobis distance of ARX 

coefficients, (b) t-test statistics of angle features, and (c) t-test statistics of the Mahalanobis distance of AR 

coefficients 
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7. CONCLUSIONS 
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This paper presents data-driven structural damage detection methodologies. In these techniques, the measured 

structural responses are processed to extract features that are sensitive to damage, yet robust to measurement 

noise and environmental variability. Regression analysis is performed to extract features from measured signals. 

Several auto-regressive models are available for this purpose. For structures with linear topology, stiffness 

parameters of the system can be estimated by using certain substructural regression models. Coefficients of 

multivariate regression models are condensed into scalar damage features. Vectors of such features that are 

extracted from different monitoring datasets are then analysed through change point detection in order to 

statistically test the significant of any potential change. These damage detection methods are implemented in a 

Matlab-based graphical interface (DIT) in order to facilitate application of several combination of training 

models, damage features, and change point methods. This paper describes damage detection using DIT through 

two case studies: (1) a simulated shear bridge structure, and (2) a two-bay scale steel frame tested in the 

laboratory. It was observed that incorporating multiple mathematical models, damage sensitive features and 

change detection tests improve the overall performance of these model-free structural damage detection 

techniques. This shows potential application of such methodologies for automated structural damage diagnosis. 
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