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ABSTRACT 

Modern system identification (SID) procedures rely on fixed sensor networks for data collection. Ideally, 

sensors are fixed at locations and contain profitable structural responses, however, such sensing areas are often 

limited by the accessibility of the structure and environmental hazards. Not only are fixed sensor placements 

limited, the data contains restricted spatial information. Mobile sensors simultaneously record data in time while 

moving in space, so that few sensors collect data containing dense, less-restricted spatial information, providing 

a more cost-effective solution than a dense array of static sensors.  

Mobile sensor data contain fundamentally different attributes than fixed sensor data. Such data can be classified 

as dynamic sensor network (DSN) data, which inherently include spatial discontinuities whenever sensors 

change position. Despite this challenge, such data can be processed for identification using an iterative machine 

learning technique Structural Identification using Expectation Maximization (STRIDE). Furthermore, the 

preservation of spatial information in mobile sensor networks has been quantified throughout simulations: given 

the same number of sensors, a mobile sensor network produces superior spatial information when compared to a 

static sensor network. 
 
In this paper, ambient vibrations of a simple beam test-bed are measured by a wireless mobile sensor network 

which includes four parallel lines of motor-driven belts that tow an array of sensor carts along the span of the 

beam. Feedback between the step motor and a computer was established to achieve a precise spatial grid for the 

mobile sensors. Modal identification results are presented, documenting the accuracy and feasibility of a real-

world mobile sensor network for SID. 
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1. INTRODUCTION  
System identification (SID) is an important aspect of structural health monitoring (SHM). Through 

the estimation of structural modal properties, a structure’s expected response to dynamic forces can be 

assessed. The accuracy of modal estimates improves with increased spatial and temporal information, 

often obtained from a sensor network installed on a vibrating structure (Pakzad et al. 2008; Pakzad 

and Fenves 2009). 

Generally, for fixed sensors, more spatial information can be attained with the use of more sensors. 

When the quantity of available sensors is limited, optimal sensor techniques can reduce redundant 

data and improve observed information (Guo 2004; Chang and Pakzad 2014). However, when in 

pursuit of dense spatial information, the resources available in a fixed sensor network may be 

insufficient. A high spatial resolution requires either an equivalently large number of sensors or 
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several implementations of a smaller network. The efficiency of increasingly dense sensor networks is 

reduced by sensor and setup costs, setup and collection times, network reliability, power 

requirements, and physical limitations due to bridge geometries (Matarazzo and Pakzad 2013; 

Bagajewicz and Sa 2000).  Additionally, preferred fixed sensor locations are not always accessible. 

Overall, the ultimate flaw of fixed sensors is that they provide restricted spatial information.  

Mobile sensor networks offer solutions to the shortcomings of fixed sensor networks (Unnikrishnan 

and Vetterli 2012; Matarazzo and Pakzad 2015b). With mobile sensing, few sensors can provide rich 

spatial information. Recent implementations of mobile sensor networks have been diverse, but 

limited. Zhu et al. (2010) created a sensing device and method that recorded measurements at 

different nodes, but required stops at each node for data collection. Sibley et al. (2002) and Dantu et 

al. (2005) implemented Robomote for coverage of large-scale sensor networks for non-SHM 

applications. Partial system identification (SID) applications have included using frequency-domain 

techniques for frequency identification in single bridge spans (Lin and Yang 2005; Cerda et al. 2012) 

and theoretical analyses with limited experimental results (Gonzalez et al. 2009; Gonzalez et al. 

2012). 

A comprehensive modal identification (one that includes frequency, damping, and mode shape 

estimates) is sought using a network of mobile sensors that simultaneously move in space while 

recording data in time. In the following section, the mathematical concepts for extracting modal 

properties from mobile sensing data are reviewed. Then, the experimental test-bed, wireless mobile 

sensor platform, and data collection protocol are described. The collected data is analyzed and the 

system identification results are discussed, followed by concluding remarks.  

 
2. MATHEMATICAL MODEL  
 
2.1. A Truncated Physical Model (TPM) for Mobile Sensing Data 
 
Similar to other new sensing techniques, e.g. data fusion (Smyth and Wu 2007) or SID with 

incomplete data (Matarazzo and Pakzad 2015b), mobile sensor data contains inherently different 

attributes in comparison to typical fixed sensor data. In the context of this paper, mobile sensor data is 

considered a part of the broad class of dynamic sensor network (DSN) data and can be efficiently 

processed with the Truncated Physical Model (TPM) (Matarazzo and Pakzad 2015c; 2015d), which 

naturally contains spatial discontinuities whenever sensors change position during data collection. 

These spatial discontinuities are defined by the paths of the mobile sensors and their sampling 

frequencies. For details on the characteristics of DSN data and formation of these spatial 

discontinuities, the reader is referred to (Matarazzo and Pakzad 2015c).  

 
With DSN data, information from a very large number of sensing nodes are available, however, it is 

not feasible, nor is it necessary in many cases, to select a model with DOF assigned at all sensing 

nodes. The TPM integrates rich spatial information into a relatively small-sized model. 

 
In general, the definition of the state variable determines the success of the state-space model. A 

model with states defined as the responses of all sensing nodes would be unmanageably large. In the 

TPM, the states are defined at user-selected DOF, located where modal ordinates are desired. 

Mathematically, the truncated physical states are defined by the transformation from modal 

coordinates to physical coordinates. Equations (1 – 5) are based on the relationship , where  

is the transformation matrix that maps modal states  z  to selected physical states  x . The 

transformation matrix is comprised of mode shape ordinates at the TPM states (the locations specified 

by the user). The following TPM model parameters are defined in terms of state-space model 

parameters for the modal state-space model (Juang and Phan 2001). 
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  A
M

is the modal state matrix,   B
M

is the modal state input matrix,  is the modal input vector,   C
M

is the modal observation matrix (Juang and Phan 2001), and  is random measurement noise. The 

superscript  
M

 indicates modal truncation at structural mode M. The TPM model parameters , , 

and  are in physical coordinates. Lastly,  is a time-varying, mode shape regression (MSR) 

matrix that links the responses of the observed sensing nodes, i.e., DSN data 
 
y , to the underlying, 

user-selected states defined by . The MSR term is essential to correctly incorporate observed DSN 

data in the TPM. 

 
Two attractive features of the TPM are its scalability and its versatility. The model’s size is not 

governed by the spatial resolution of the sensor network. The model size is equivalent to that of the 

modal state-space model, which is defined by the number of modes included in the analysis and is 

relatively small when considering many sensing nodes. Furthermore, user-defined TPM state 

variables enable a high utility for extracting the vast spatial information contained in DSN data. In the 

TPM, corresponding mode shapes are the modal ordinates at the locations of the TPM states, , 

which are arbitrary. This attribute may seem at first, limiting; however, through various definitions of 

 (consequently newly defined TPM states ) and repeated model implementations, high-resolution 

mode shapes can be estimated through SID. In summary, the TPM offers a versatile technique for 

extracting rich spatial information from DSN data. 
 
2.2. IDENTIFICATON OF THE TRUNCATED PHYSICAL MODEL (TPM) 
 
In this section, an overview of the system identification procedure is discussed. The Structural 

Identification using Expectation Maximization (STRIDE) (Matarazzo and Pakzad 2015a; 2015b) 

algorithm, tailored for the TPM, was implemented. For brevity, the details of this technique are not 

explicitly discussed in this paper, but are available in chapter 6 of (Matarazzo and Pakzad 2015c). 

 
STRIDE is used to determine maximum likelihood estimates (MLE) for the TPM model parameters. 

The algorithm begins with an initial estimate of the model parameters. These parameters are updated 

iteratively, based on statistics from the expectation step (E-step) and equations in the maximization 

step (M-step). The significance of the parameters update equations in the M-step is that they are 

designed to optimize the conditional expectation of the log-likelihood function for the TPM. When the 

measured slope of the likelihood function becomes practically equal to zero, the algorithm ends, and 

the final parameter estimates are the MLE. 
 
3. EXPERIMENTAL TESTBED 
 

In this experiment, eight mobile sensing carts scanned a steel beam structure under ambient vibration 

loading conditions. Four belts, which extended over the span of the beam, towed the sensor carts. 

These belts were part of a pulley system driven by a computer-controlled motor. The motor was a 

STAC6-Si model from Applied Motion, controlled by Si Programmer software (Si 2015). The 144-

inch steel beam was simply supported with a span of 119.75 inches, serving as a roadway for the 

mobile sensor carts to move along. The belt tensions were maintained to limit the sag of the top 

portion and prevent slippage of the bottom. The sensor carts were constructed with molded plastic 

connector pieces. A rubber friction pad was placed on the roof of each cart to make contact with the 



bottom of the belts and enable towing. Sensor cart details are shown in Figure 1a; a photograph of the 

test specimen is provided in Figure 1b. 

The wireless sensor within each sensor cart was composed of materials produced by MEMSIC. It 

consisted of an IPR2420 Imote2 preconfigured with the TinyOS bootloader which used Java to allow 

for a more reliable and efficient method of gathering data (Pakzad et al. 2008). The code was sent to 

an IIB2400 interface board where it was debugged with the help of JTAG (Imote2). The IBB2400CA 

battery board was powered by three 1.2 V batteries, and an ISM400 sensor board collected 

acceleration data (Spencer 2011) As pictured in Figure 1a, each belt towed two carts, and in the 

starting position, the wheels of the leading sensor cart were aligned over supports (located 12-1/8 

inches from the edge of the beam). Belt pairs rotated in reverse directions, carrying eight sensor carts 

in total. Two sets of four carts were on each side of the beam. A top view of the setup with pertinent 

dimensions is in Figure 2. 

 

 

Figure 1: Experimental components – (a) A close-up of mobile sensor cart carrying the IBB2400CA 

battery board, ISM400 sensor board, and IPR2420 Imote2. (b) Beam sits on two rods for simple 

support, while a motor (at right) allows blue belts to move sensors the length of the beam. 

 

 

Figure 2: Experimental schematic in plan view with sensor carts in their starting positions – Pertinent 

dimensions and sensor numbers are provided. The large rectangle is the simply supported beam; 

squares indicated by 24, 36, 55, 56, 64, 66, 68, and 147 are the sensor carts; smaller squares within the 

sensor carts represent the accelerometer within the wireless sensors. 



With the specimen and pulley system constructed, a custom script was developed using the Si 

Programmer to control the rotation of the motor and therefore the paths of the mobile sensors. In this 

protocol, sensor carts were pulled at a speed of 4.5 inches/second for a total of 129.3 inches, then the 

direction of the motors reversed so that sensor carts returned to their starting positions. The distance 

of 129.3 inches permitted all sensor carts to traverse the entire span of the beam. The beam vibrated in 

ambient conditions while the sensor carts moved across the beam and recorded accelerations at rate 

280 Hz. Sensor network data was retrieved using the computer program Cygwin Bash Shell (by 

Cygnus Solutions) and then imported into MATLAB for data analysis. 

 

4. RESULTS AND DISCUSSION 

 

Figure 4 provides the power spectral density estimate for a representative mobile sensor up to 30 Hz. 

There are a few distinct peaks within this figure, which indicate the presence of natural vibration 

modes in the data. 

 

 
Figure 4: Power spectral density of a mobile sensor estimated by Welch’s Method 

The STRIDE analysis of the mobile sensor data was implemented for five different sets of TPM 

states. As a result, modal coordinates for twenty-two different beam locations were identified. Using 

data from only six out of eight sensors, the STRIDE algorithm identified three vertical modes and one 

torsional mode, with frequencies that aligned well with the peaks in Figure 4. The identified modal 

frequencies, damping ratios, and shapes are provided in Figure 5. STRIDE estimated vertical 

frequencies to be 5.18 Hz, 11.6 Hz, and 25.9 Hz, and identified the torsional frequency as 6.43 Hz. 

However, frequency information can arguably be obtained directly from inspection of the power 

spectrum. The novelty within the TPM and STRIDE lies within the ability to extract the rich spatial 

information hidden within the mobile sensor data. The mode shapes in Figure 5 contain twenty-two 

modal estimates from only six sensors. Twenty-two fixed sensors (or multiple outings with fewer 

sensors) would be required to achieve this spatial resolution. To reiterate, fixed sensors contain 

singular spatial information. In these results, it is evident that the mobile sensor data is capable of 

efficiently storing information for many points on the structure.   

 

 



 
Figure 5: Four identified frequencies, damping ratios, and mode shapes 

 
5. CONCLUSION 
 
In this paper, a mobile sensing platform was developed with the immediate goal of identifying 

frequencies, damping, and mode shapes of a structural system from wireless accelerometer data. The 

Truncated Physical Model (TPM) required to process mobile sensor data was discussed and the 

Structural Identification using Expectation Maximization (STRIDE) algorithm was selected to 

identify the model parameters. Eight moving sensor carts, each equipped with a wireless sensor, were 

towed over the span of a simply supported steel beam by four parallel belts in a motor-driven pulley 

system. The two pairs of belts, each towing two sensors, were constructed to revolve in reverse 

directions, so that sensors traveled in opposing directions, similar to traffic on a highway. 

 

Using the mathematical tools outlined in this paper, three vertical modes and one torsional mode were 

identified from the mobile sensor data. The novelty within the TPM and STRIDE is the ability to 

extract the rich spatial information hidden within the mobile sensor data. Using data from only six of 

the eight sensors, mode shapes with twenty-two ordinates were constructed. Twenty-two fixed sensors 

would have been necessary to achieve spatial resolution comparable to the results in Figure 5.This 

study further quantified the superior spatial information provided by mobile sensors and used 

experimental data to validate the applicability of STRIDE to the TPM. 
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