
6th International Conference on Advances in Experimental Structural Engineering
11th International Workshop on Advanced Smart Materials and Smart Structures Technology
August 1-2, 2015, University of Illinois, Urbana-Champaign, United States

A Uniform Method to Integrate Testing Equipment for Large-Scale
Quasi-Static Structural Testing

K.J. Wang1, K.C. Tsai2
1 Technologist,National Center for Research on Earthquake Engineering, Taipei, Taiwan.

E-mail: kjwang@narlabs.org.tw
2 Professor, Dept. of Civil Engineering, National Taiwan University, Taipei, Taiwan.

E-mail: kctsai@ntu.edu.tw

ABSTRACT
This paper presents a method that allows smooth integration of different testing equipment such as actuator
controllers and data acquisition systems for the purpose of conducting large-scale quasi-static structural testing.
Rather than using less equipment each of which has high testing capacity, a more economical and hence more
practical approach is instead to jointly use more equipment each of which provides only moderate testing
capacity. This research work designed and established a uniform method that achieves this goal by means of
software integration without losing the flexibility that can be offered in quasi-static structural tests.
A new application protocol, “Remote Equipment Control and Data Exchange (Recdex),” was proposed for the
communication need and was implemented in newly developed C++ classes in the “Software Framework for
Quasi-static Structural Testing (SFQSST)” earlier developed by National Center for Research on Earthquake
Engineering, Taiwan to utilize the Internet to achieve the said goal. A cyclic test of 1/13-scale model of RC
nuclear containment vessel was conducted using the proposed method. In this test, twelve actuators, four
actuator controllers, and one data acquisition system were controlled by four host computers. The success of the
test demonstrated the validness of the proposed method.

KEYWORDS: quasi-static, Internet, large-scale, C++, SFQSST

1. INTRODUCTION

Undoubtedly structural testing plays an irreplaceable role in the advancement of the development of structural
knowledge. Structural testing is required not only to verify the validness of newly developed theories, but also to
evaluate the properties of structural components, assemblages, as well as systems. In some studies the method of
structural testing is also used to evaluate the seismic properties of existing structures. In recent years, more and
more testing requests have been placed on laboratories. Researchers increasingly request testing on specimens
not only with more delicate details but also with larger sizes.

Among all structural testing methods the quasi-static testing has the longest history of application in structural
laboratories. The definition of quasi-static testing is that the rate of specimen deformation is not the main control
target in tests. That is, when conducting quasi-static tests typically only the displacement or the force levels are
considered as the control targets, without paying much attention to the rates at which the displacement or the
force commands are applied. This characteristic of not controlling the deformation rates lends the testing
method to perfectly appropriately test specimens made of materials whose responses are practically independent
of their deformation rates, such as steel and concrete, the most widely used materials in civil engineering. Since
the deformation rates are insignificant, typically quasi-static tests are conducted by repeating a series of
“execution steps.” The concept of an execution step is illustrated in Fig. 1.1. In each execution step, the
actuators are firstly controlled to ramp to their target levels and then controlled to hold the specimen still at the
achieved levels for a certain amount of time. The purpose of introducing the pause stage after the ramp stage is
to perform certain tasks including data acquisition, immediate data manipulation, calculation of command levels
corresponding to next execution step, and the human activity of investigation on the specimen.

Compared to shake table testing, in quasi-static testing the controls are not required to cope with the inertial and
damping force introduced during the course of the tests. In other words, the size of the specimen that can be
tested in quasi-static testing is significantly larger. This eliminates the problems that are frequently encountered

in shake table testing, such as scale effects and specimen-table interaction. In most cases tests upon large-scale
or full-scale specimens can only be planned and executed by quasi-static testing method.

Figure 1.1 Definition of an execution step

In addition, in quasi-static testing the tests need not be executed in hard real-time. This results to two favorable
features: (1) testing devices with only moderate working rates can be accepted, and (2) it only needs to consider
the logic, but not the timing as in real-time systems, in the interaction and communication between different
used apparatuses. The first feature actually translates to the characteristic of cost effectiveness which implies
that more testing equipment can be purchased within budget. The second feature suggests that the testing system
can be one with a more open architecture. It is generally easier to add or replace testing hardware and/or
software components to add or update the testing capacities of a quasi-static testing system.

The characteristics described above make the quasi-static testing more suitable to test specimens with larger
sizes and with more delicate modelling details. However, to perform a test on such specimen usually it requires
a large number of testing apparatuses, such hydraulic actuators and data acquisition channels. One possible way
for the laboratory to provide such high testing capacity is to use high-capacity hardware such as a single actuator
controller that can simultaneously control the motion of a large number of hydraulic actuators. However, it
might not be the most cost effective investment to equip the laboratory with such high-capacity hardware since
after all such demand of testing on large or delicate specimens is still less than that for those tests that need only
decent or moderate testing capacity. Contrarily, it would be more feasible to link a large number of
moderate-capacity hardware together by means of software programs to collaboratively provide the required
higher testing capacity. This research developed the required software components that integrate experimental
equipment in a uniform manner for large-scale quasi-static testing.

2. A FLEXIBLE SOFTWARE FRAMEWORK FOR QUASI-STATIC TESTING

An object-oriented C++ software framework, named “Software Framework for Quasi-Static Structural Testing
(SFQSST)”, that solves the most frequently encountered problems in quasi-static testing was developed in
National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan. Some of the flexibility
SFQSST provides to the end users of quasi-static testing include:

(1) New functionality provided by new testing hardware can be easily added to the existing testing system.
(2) New functionality provided by new procedures of data manipulation can be easily added to the existing

testing system.
(3) There is a universal method to synchronize all participating hardware and software components.

Communication between any two hardware machines need not depend on the built-in hardware
input/output capacity.

(4) Users need not write new or modify existing program codes to support new actuator configurations.
Instead, users can define new actuator configurations by editing the input files.

(5) Tasks to be performed in an execution step are not hardcoded in the control program and can also be
defined by editing input files. They can even be modified dynamically during the course of the test.

(6) Commands can be added, deleted, and modified during the course of the test.
(7) New signals of virtual sensors can be defined dynamically during the course of the tests. Users supply

mathematical formulae to define those virtual signals. For example, the user can create a signal that
calculates the axial force of a brace element based on the strain gauge readings measured on that brace.

(8) Data collected by different hardware machines and software components can be simultaneously compared
or further collectively manipulated during the course of the test.

Detailed description of SFQSST can be found in [1]. Three important designs in SFQSST that relate to support
of integration of testing equipment are described in this section.

2.1. Machine and Trigger in Quasi-static Testing

The abstraction Machine encapsulates the concept of an entity (a software component or hardware machine)
that can be request to do specific works. For example, a concrete Machine object can be a command generator,
an actuator controller, a data acquisition system, a data file writer, a data uploader (to a remote database
management system), or a software calculator… etc. Some of the Machine classes are shown in Fig. 2.1. Each
concrete Machine object performs certain task which is a part of the complete tasks in an execution step. The
user defines each Machine object such that the Machine object knows its specific task in detail when it is
requested to do work at a later time. However, they do not have the knowledge as to when they should perform
the specified tasks. Each individual task (such as actuator ramping, data acquisition, virtual signal calculation,
data saving in files, data uploading to a remote database…, etc.) that should be performed in a quasi-static test is
encapsulated in a concrete Machine object. This design allows easy modification on existing tasks and easy
addition of new tasks since each task is completed encapsulated in its own concrete Machine class.

Figure 2.1 The Trigger class and Machine class hierarchy

The abstraction Trigger is the window for the user to make requests to a concrete Machine object to perform its
specified tasks. A concrete Trigger object creates a working thread in which it issues work requests to a
specified concrete Machine object. The user uses a concrete Trigger object to start, pause, resume, and stop the
sequence of a test.

2.2. Task Contents in an Execution Step

One of the most important features that quasi-static testing can offer is flexibility. In quasi-static testing the
tasks to be performed in an execution step vary from one test to another depending on each individual test goal.
In addition, in real practice there even exist unexpected situations that require dynamic change of the tasks to be
performed in an execution step during the course of the test. SFQSST adopts the Composite Pattern [2], as
shown in Fig. 2.2, to provide such flexibility. The end user can change the task contents in an execution step by
inserting or deleting various concrete Machine objects into a SequentialComposite or a ParallelComposite
object (both are composite machines), which receives the triggering request from the concrete Trigger object.
By appropriately arranging the component Machine objects in a composite machine object, task contents can be
changed according to each test goal without the need to modify existing and develop new program codes. The
task content can even be changed dynamically during the course of the test according to various unexpected test
conditions (such as the requirement to change the loading protocol or to add/delete data measuring channels due
to unexpected specimen damages).

Figure 2.2 Composite Pattern adopted in SFQSST for flexible definition of contents in an execution step

2.3. Data Exchange between Machines and Other Observer Objects

As explained in previous sections, in SFQSST corresponding testing tasks are performed by various kind of
concrete Machine objects. Meanwhile SFQSST provides SequentialComposite and ParallelComposite
objects to allow the end users to freely compose the task contents in an execution step by arranging concrete
Machine objects into a composite machine. The concrete Trigger object would issue work request to the
composite machine and the composite machine would in turn relay the work request to its component Machine
objects in the sequence specified by the end users. However, for some of these concrete Machine objects to
work they might need information generated by other objects in the system. For example, for an actuator
controller to control the actuator piston, the controller need to know the target level, which obviously is
generated by some command generator object in the system.

SFQSST adopts the Observer Pattern [2], as shown in Fig. 2.3, to achieve the goal of data exchange between all
system objects. SFQSST provides several concrete Variable classes to allow all system objects to store data
values. DataBroadcaster objects are containers of Variable objects and is a kind of Subject objects. In this
design, when a DataAcquisitionSystem object generates data in an execution step, it saves the data values to
concrete Variable objects. The DataBroadcaster would then inform those DataConsumer objects that are
interested in the corresponding data values. Thereby data values can be transmitted from one object to another.
The Variable objects in a sense are the elements that glue all those originally independent objects together to
become a workable system.

Figure 2.3 Observer Pattern adopted in SFQSST for data exchange

This section describes the mechanisms by which SFQSST provides flexibility for quasi-static testing. It is
obvious that in SFQSST multiple hardware machines (even from different vendors, have different working
purposes and logics) and software components can be integrated and simultaneously utilized by one control
program in a smooth manner. However, there are some cases that difficulties arise to control all the hardware
machines in a single control program. Such situations might be caused by the fact that the testing machines are
located in different places such that it is difficult to connect the machines to the control computer
simultaneously. Another situation might be the limitation posed by the configurations of specific testing
hardware that it only allows certain setup of the hosting control computer. This suggests that the concept of
geographically distributed structural testing might be a solution in such scenarios to achieve further integration
of testing equipment for a single quasi-static test.

3. SUPPORT FOR GEOGRAPHICALLY DISTRIBUTED QUASI-STATIC TESTING

In the past decade, several platforms for conducting geographically distributed hybrid simulation have been
developed around the world [3-5]. This research establishes a new testing platform that links testing hardware
and software components that are geographically distributed together to conduct a single quasi-static test. This
platform is established using Transmission and Control Protocol/Internet Protocol (TCP/IP). A binary
application communication protocol, named “Remote Equipment Control and Data Exchange (Recdex),” is
proposed. Currently, only four Recdex packets are defined as shown in Table 3.1.

Table 3.1 Currently defined Recdex packets
Packet name Usage
RECDEX_SENDSIGSET This packet is to be sent by both the server and the client before the test

starts. It contains the names of the signals that are to be sent to the remote
side. When sent by the client the signal values are actually the required
command values (input parameters) for the server program. When sent by
the server the signal values are actually the feedback values (output
responses) for the client program.

RECDEX_EXECUTE The client program requests service from the remote server program by
sending this packet. This packet carries the required command values
(input parameters) for the server program. The number and the sequence
of the values should correspond to those of the signal names previously
sent to the server program using the RECDEX_SENDSIGSET packet.

RECDEX_EXECUTE_DONE Once the server program receives a RECDEX_EXECUTE packet, it
should perform any required action (e.g., actuator control or data
acquisition…). After it finishes the task it should send a
RECDEX_EXECUTE_DONE packet back to the client program as an
acknowledgement for the previously received corresponding
RECDEX_EXECUTE packet. This packet carries the feedback values
(output responses) for the client program. The number and the sequence of
the values should corresponds to those of the signal names previously sent
to the client program using the RECDEX_SENDSIGSET packet.

RECDEX_TEST_FINISHED This packet is sent by the client program to the server program to indicate
that no further request of testing service will be issued.

The architecture of the Recdex platform is illustrated in Fig. 3.1. It is obvious that this architecture is probably
the simplest one since there is only one Recdex server and one Recdex client. They are connected via typical
Ethermet connection and they communicate by the proposed protocol Recdex. The Recdex server provides
certain testing service, such as actuator motion control, data acquisition… etc. Recdex client requests the remote
service from the Recdex server. To support Recdex in SFQSST, two main classes (RecdexServerImp and
RecdexClientImp) that both implement Recdex, and one concrete Trigger subclass (NetTrigger), are designed
and implemented. Partial class hierarchies of these classes are shown in Fig. 3.2 and Fig. 3.3.

As described in section 2.1, the abstraction Trigger is the window from which end user makes a work request
upon a concrete Machine object. For the server program, in the scenario of geographically distributed testing,
the work request actually comes from the remote client program in each execution step. The end user of the
server program simply indicates whether or not the server is ready to serve. Therefore, a concrete Trigger class,
NetTrigger, is designed and implemented. A NetTrigger object allows the end user to start the working thread.
The NetTrigger object also issues work request to a user-specified Machine object (depending on what the
service the server program is planned to provide) when a RECDEX_EXECUTE comes. A NetTrigger object is
created by and associated with a RecdexServerImp object.

The responsibilities of RecdexServerImp include: (1) implementing the communication protocol Recdex, and
(2) serving as the bridge between the server program itself and the remote software entity (the client program)
which issues a work request in each execution step. To fulfill the second responsibility described here, the
RecdexServerImp is designed to be publicly inherited from DataAcquisitionSystem. Before the test starts
once it receives a list of names of input parameters carried by the RECDEX_SENDSIGSET packet, it creates a
concrete Variable object for each of the input parameter signal. During the course of the test when in each
execution it receives the input parameter values via the RECDEX_EXECUTE packet, it acts as a

DataAcquisitionSystem object to broadcast those values so that all other system objects in the server program
have access to them.

The RecdexServerImp class is also publicly inherited from LoginServerProtocolImp, which in turn is
inherited from the abstraction ProtocolImplementor which provides services of establishing TCP/IP
connections, as well as sending and receiving data packets. LoginServerProtocolImp (along with
LoginClientProtocolImp) provides a simple login procedure to enhance the safety of network communication.

The main responsibility of RecdexClientImp is to serve as an agent to remote testing service for the client
program. Namely, from the view point of the client program, a RecdexClientImp object is a kind of concrete
Machine object since a Machine is a kind object that performs certain tasks in an execution step. Therefore a
RecdexClientImp object can be included in a SequentialComposite or a ParallelComposite object, which can
be triggered by a concrete Trigger object in an execution step. When the RecdexClientImp object is requested
to perform its tasks, it firstly sends a RECDEX_EXECUTE packet to the server program and then waits for the
corresponding RECDEX_EXECUTE_DONE packet to come back. If the RECDEX_EXECUTE_DONE packet
carries the remote execution result (the output responses), the RecdexClientImp stores these results in concrete
Variable objects which were previously created when the client program received the
RECDEX_SENDSIGSET packet. In this way all the other system objects in the client program can have access
to the execution results sent by the remote server program.

Figure 3.1 Architecture of the Recdex platform

Figure 3.2 Partial inheritance of RecdexServerImp

Figure 3.3 Partial inheritance of RecdexClientImp

An example of SDOF pseudo-dynamic testing, as shown in Fig. 3.4, is given here to illustrate how the
aforementioned objects work together to achieve geographically distributed quasi-static testing. In the client
program a SequentialComposite machine which includes two component machines, “PseudodynamicCmd” (a
CommandGenerator) and “MTSControllerAgent” (a RecdexClientImp), is defined. In the server program a
“MTSControllerService” (a RecdexServerImp) and a “MTSController” (a MTS793Controller) are created. In
each execution step, the “PseudodynamicCmd” calculates the displacement command value and saves it in a
concrete Variable class (Double) “Disp” (step 1), such that when the “MTSControllerAgent” is requested to
work the “MTSControllerAgent” knows where to retrieve the value of the input parameter, the displacement
command (step 2). However, “MTSControllerAgent” is merely a software entity which does not know how to
impose the displacement command on the specimen. Instead, it knows how to relay the work request to a remote
server program by sending the command value with a RECDEX_EXECUTE packet (step 3). Meanwhile, in the
server program, the user has started a NetTrigger object upon a concrete Machine object “MTSController,”
whose task is to impose the displacement command on the specimen. However, the NetTrigger object does not
issue work request on “MTSController” unless the “MTSControllerService” allows it to.
“MTSControllerService” allows the said trigger to occur only when the value of the input parameter
(displacement command) carried by the RECEDEX_EXECUTE packet is received and saved in a Double
object “D” (step 4). After that, the NetTrigger issues the work request on the “MTSController” to impose the
displacement command on the specimen. Then “MTSController” retrieves its command from the Double object
“D” (step 5), imposes the displacement command on the specimen, and finally measures and saves the restoring
force in another Double object “RF” (step 6). Once this is done the NetTrigger knows that the current
execution step is completed, then it notifies the ProtocolImplementor object (in this case, the
RecdexServerImp object “MTSControllerService”, which created the NetTrigger object in an earlier time) of

this event. Then the “MTSControllerService” retrieves the force value from the Double object “RF” (step 7) and
sends this value back to the remote client program with a RECDEX_EXECUTE_DONE packet (step 8). In the
client program, the “MTSControllerAgent” receives the force value and saves it in the Double object “Force”
(step 9). This completes the current execution step on the SequentialComposite object in the client program.
When next execution step starts, the abovementioned procedure repeats with the “PseudodynamicCmd” firstly
retrieving the value of the restoring force from the Double object “Force” (step 10).

In this example, before the test (the first execution step) runs, TCP connection between the client program and
the server program has to be established first. “MTSControllerAgent” and “MTSControllerService” need to
send RECDEX_SENDSIGSET packets to each other. The sending signal set that “MTSControllerAgent” sends
to “MTSControllerService” contains only one signal, the “Disp.” Similarly, the sending signal set that
“MTSControllerService” sends to “MTSControllerAgent” contains only one signal, the “RF.”

For comparison, Fig. 3.5 illustrates the details of conducting a SDOF pseudo-dynamic test in a single control
program. The SequentialComposite object in the control program contains two component Machine objects,
the “PseudodynamicCmd” and the “MTSController.” This example explains the method proposed by this study:
the uniform method to smoothly integrate testing equipment (whether or not the equipment is geographically
distributed) for quasi-static testing.

Figure 3.4 An example of geographically distributed pseudo-dynamic testing

Figure 3.5 Normal implementation of pseudo-dynamic testing

4. A TEST ON A SEPCIMEN OF REINFORCED CONCRETE CONTAINMENT VESSEL

A reinforced concrete containment vessel (RCCV) is considered to be one of the key contributors to a nuclear
power plant (NPP) system’s Defense in Depth (DID) strategy. NCREE and the University of Houston, USA,
cooperated to design and build a 1/13-scaled RCCV shell specimen to investigate the mechanical behavior and
the failure mechanism of reinforced concrete cylindrical shells. The prototype cylindrical shell has an outer
diameter of 33m, a wall thickness of 2m, and a clear height of 29.5m. This resulted in a shell specimen design of
250 cm in outer diameter, 15 cm in thickness, and 225 cm in clear height. Fig. 4.1 shows the cyclic loading test
setup and lateral support system.

Totally twelve 980kN actuators were controlled by four MTS actuator controllers in this test. Eight actuators
were employed in the lateral direction to apply cyclic loads. Four actuators were used in vertical direction to
maintain double curvature and constant axial load of the specimen. Experimental data was acquired using TML
THS1100 static data logger and a 3-D optical displacement measurement system NDI. Three instances of a
control program “FlexControl” which was developed using SFQSST were used to control the eight lateral
actuators. The three instances of “FlexControl,” one client and two server programs, were connected using
typical Ethernet connection. These three control programs communicated through Recdex and collaboratively
imposed the specified cyclic displacement commands on the RCCV specimen. In each execution step, according
to the desired loading protocol, the client program calculated the displacement command value and controlled
the motion of two lateral actuators. Besides that, the client program also sent the command value to the other
two server programs, which controlled the motion of the remaining six lateral actuators. The client program also
took the responsibility of controlling the THS1100 data acquisition system. A typical test result is shown in Fig.
4.2. The success of this test demonstrated the feasibility of the method to uniformly integrate different testing
equipment to collaboratively conduct quasi-static tests proposed in this study.

-6000

-4000

-2000

0

2000

4000

6000

-25 -20 -15 -10 -5 0 5 10 15 20 25

Ba
se

 S
he

ar
 (k

N
)

Drift Disp. (mm)

Figure 4.1 Test setup of the RCCV cyclic test

Figure 4.2 Experimentally obtained hysteresis of the
RCCV specimen

5. CONCLUSION

This paper describes a uniform method that integrates different testing equipment for quasi-static testing. An
application protocol, Recdex, was proposed and related C++ classes were developed in SFQSST to support
geographically distributed testing. A cyclic test performed on a 1/13 scaled RCCV specimen was conducted
using the method proposed by this study. The success of the test validate the feasibility of the proposed method.

AKCNOWLEDGEMENT

The authors would like to express their sincerest gratitude toward the NCREE laboratory support. Thanks also
go to Dr. C. L. Wu and Dr. H. C. Yang for their enormous support in preparing the RCCV cyclic test.

REFERENCES

1. Wang, K. J. and Tsai K. C., (2011). A Software Framework for Quasi-static Structural Testing. NCREE

technical report. NCREE-11-007.
2. Gamma, E., Helm, R., Johnson, R., Vlissides, and J. M., (1994), Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley
3. Watanabe, E., Kitada, T., Kunitomo, S., and Nagata, K. (2001). Parallel pseudo-dynamic seismic loading

test on elevated bridge system through the Internet. Proc., 8th East Asia-Pacific Conf. on Structural
Engineering and Construction, Singapore.

4. Tsai, K. C., Yeh, C. C., Yang, Y. S., Wang, K. J., Wang, S. J., and Chen, P.C. (2003). Seismic hazard
mitigation: Internet-based hybrid testing framework and examples. Proc., Int. Colloquium on Natural
Hazard Mitigation: Methods and Applications, Villefranche sur-Mer, France.

5. Mosqueda, G. (2003). Continuous hybrid simulation with geographically distributed substructures. PhD
dissertation, Dept. of Civil and Environmental Engineering, Univ. of California at Berkeley, Berkeley.

