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ABSTRACT 
This paper develops and updates a finite element model of a base-isolated reinforced concrete building that was 
tested at Japan’s E-Defense earthquake engineering research center in 2013 to evaluate the effects of seismic moat 
wall pounding and isolation during long-period earthquakes. This full-scale four-story moment frame building, 
with two reinforced concrete walls, sits on an isolation composed of rubber bearings, elastic sliders, U-shaped 
steel dampers and oil dampers. Designing controllable dampers for planned 2016 or 2017 tests requires a 
calibrated numerical model. The authors previously reported modal analysis results, based on random excitation 
responses during the 2013 tests. Herein, a finite element model (FEM) is developed and updated to match the 
identified modal parameters. The superstructure FEM consists of line and shell elements and (linear) spring 
isolation elements, resulting in 1757 nodes and 10,542 degrees of freedom. 21 parameters (various Young’s 
moduli, isolation layer stiffnesses, and point masses) were updated iteratively using the Nelder-Mead simplex 
method using frequency residuals and mode shape MAC values between FEM modes and those identified from 
the 2013 random tests.  The optimization converges to an updated FEM that provides much better match with 
the experimental data, reducing the frequency and MAC residuals by 60-90%. 
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1. INTRODUCTION 

Japan’s Hyogo Earthquake Engineering Research Center, commonly called E-Defense, is a shake table testing 
facility constructed in the early 2000s in Miki City, Japan, for performing full-scale earthquake experiments to 
better understand the seismic behavior of building structures. The 20 m  15 m shake table is capable of shaking 
test specimens in 6 degrees-of-freedom, thereby producing velocities of up to ±2 m/s and displacements of ±1m. 
For instance, a three-story self-centering rocking steel frames structure was tested in 2009 [1] to demonstrate the 
effectiveness of steel rocking frames with replaceable energy dissipating devices [2]. Other examples of such 
studies are earthquake loading experiments carried out on a 5-story steel moment frame building [3]; in these 
experiments, the structure was tested both in a fixed-base configuration and a base-isolated configuration using 
triple friction pendulum bearings and lead rubber bearings. These tests also aimed at understanding the behaviors 
of non-structural components, such as ceilings, piping systems and non-structural walls [3]. 

2. BACKGROUND 

More recently, in 2013, a series of seismic shaking experiments were performed on a four-story base-isolated 
reinforced concrete (RC) building, shown in Figure 2.1(a) [4]. The structure is supported against lateral loads 
using RC moment frames along with two structural walls in one corner of the building. The building is base 
isolated using four different kinds of passive isolation and damping devices: rubber bearings, elastic sliding 
bearings, U-shaped steel dampers and oil dampers. In 2013, the building was subjected to a series of earthquake 
records to evaluate the effectiveness of the passive isolation, particularly with regard to pounding against the 
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seismic moat [4]. Additional tests using controllable passive dampers are planned for 2016 or 2017. It is essential 
to obtain a validated numerical model of the building in order to design the necessary control strategies that will 
be used in future tests. 

The building was equipped with different types of sensors, including 42 accelerometers for measuring structural 
accelerations, denoted SA01X – SA14Z (Figure 2.2), 58 sensors for measuring forces in the isolators and 4 sensors 
for measuring displacements in the isolation layer. The structure was subjected to well-known earthquake records 
scaled to different magnitudes and applied in different directions. At the beginning of the first day of testing, and 
subsequently in between different earthquake records, a series of shaking table tests using random excitations in 
different directions were performed to calibrate and evaluate the extent of damage, in both the structure and the 
isolators. 

     
 (a) (b) (c) 

Figure 2.1 The base-isolated building specimen: (a) photo at the E-Defense testing facility;  
(b) FEM (discretized view); (c) FEM (extruded view) 

    
 (a) (b) (c) 

Figure 2.2 Schematic diagrams of the floor plans [5] showing locations of accelerometers used in the 
superstructure: (a) 1st floor; (b) typical floors; (c) roof 

A previous study by the authors [6], reported modal analysis results, based on the 2013 initial tests with random 
excitations, using stochastic subspace identification (SSID) methods to obtain a set of stable mode shapes and 
natural frequencies. In that study, two SSID algorithms were used and their results were compared for validation. 
Specifically, the Numerical Algorithm for Subspace State-space System Identification (N4SID) [7] and the 
Enhanced Canonical Correlation Analysis (ECCA) [8] were chosen. The results of that study are summarized in 
Table 2.1 herein, as they represent the target mode shapes and frequencies for the model updating procedure 
presented subsequently. It is essential to note here the coupling between modes 1 and 2, because the identified 
frequencies are very close. If these two modal frequencies matched exactly, then their mode shapes are no longer 
unique, and a system identification would identify one pair of an infinite number of valid mode pairs on a two-
dimensional manifold. This may pose a challenge for the model updating problem. 

In this study, a numerical finite element model (FEM) is developed and updated to match the identified modal 
parameters. A FEM was developed for the base-isolated building as shown in Figure 2.1(b and c). The model 
includes the columns, beams, stairs, floors and structural walls. The resulting FEM is comprised of 1757 nodes 
and has 10542 degrees-of-freedom. Shell elements were used to model floors, walls and stairs; line elements were 
used to model the columns and beams, and linear spring elements were used to model the rubber bearings, elastic 
bearings and steel dampers in the isolation layer. 



Table 2.1 Results of system identification using the random excitation experiments 
Mode fECCA (Hz) fN4SID [Hz] Error [%] MAC Mode Type 

1   0.6533   0.6482   0.7778 0.7478 Translational 
2   0.6556   0.6568 –0.1769 0.9744 Translational 
3   0.7087   0.7065   0.3187 0.9854 Rotational 
4   4.8563   4.8026   1.1048 0.7616 Rotational 
5   5.2327   5.1258   2.043   0.9676 Rotational 
6   7.4716   7.2984   2.318   0.9044 Rotational 
7 10.4663 10.0556   3.9236 0.9193 Rotational 
8 15.6796 16.0262 –2.211   0.9010 Rotational 

 

3. METHODOLOGY 

Although the finite element method has undergone significant advancements for modeling complex 
linear/nonlinear structures, obtaining an FEM that accurately represents the behavior of a real structure remains a 
challenging problem. Often times, the properties of an existing structure, such as those relating to its material 
properties or geometry, are missing or inaccurate. In the case of missing properties, assumptions must be made, 
but these contribute to the inaccuracies in the model [9]. For these and other reasons, FEMs undergo an updating 
process to reduce the discrepancies between the numerical FEM and its corresponding real structure. Over the 
past two decades, several methods have emerged for addressing the problem of FEM updating using a variety of 
techniques [10]. 

In this study, a modal-based approach is used for model updating, where different structural parameters are 
modified to match the modes shapes and frequencies of the FEM to the target mode shapes and frequencies 
identified from measured responses. It is assumed the equation of motion of the structure is as follows: 

 퐌퐱̈ + 퐂퐱̇ +퐊퐱 = 퐟 (3.1) 

where 퐱 is the displacement vector of the structure relative to the ground (shake table), 퐌, 퐂 and 퐊 are the 
mass, damping and stiffness matrices, respectively, and 퐟 is the excitation force vector. For the undamped case, 
the previous equation of motion becomes: 

 퐌퐱̈ +퐊퐱 = 퐟 (3.2) 

This equation can be transformed into the modal space by taking the form of the generalized Eigenvalue problem, 
as follows: 

 퐊횽 = 횲퐌횽 (3.3) 

where 횽 is the eigenvector matrix whose columns contain the mode shapes and 횲 is a diagonal matrix whose 
diagonal values are the eigenvalues, i.e., the squared natural frequencies. Eq. 3.3 can be solved numerically from 
the FEM to obtain the mode shapes and frequencies of the structural model. The mode shapes and frequencies are 
often different from the target values obtained during system identification, so it is important to define metrics to 
evaluate the residuals between the numerical values and those computed from measurements. The residual vector 
퐫, defined for the natural frequencies, is used to quantify the difference between computed and experimentally-
determined frequencies: 

 퐫 = 퐟 − 퐟  (3.4) 

In Eq. 3.4, 퐟  is the vector of experimentally-determined target frequencies and 퐟  is the vector of computed 
frequencies (obtained from the eigenvalues). The Modal Assurance Criteria (MAC) [11] is used to quantify the 
correlation between mode shapes obtained from the FEM (φ ) and those obtained during system identification 
(φ )  as follows: 

 MAC(φ ,φ ) = | ∗. |
( ∗ . )( ∗. )

 (3.5) 

For the purpose of FEM updating, an objective function based on residuals in frequencies and the MAC values 



can be defined for a vector of parameters 퐩  as follows: 

 퐽(퐩 ) = 퐫풊퐓퐖퐫풊 +퐦풊
퐓퐖 퐦풊 (3.6) 

where 퐫  is the residual in frequencies when the parameter vector 퐩  is used in the FEM. 퐖  is a diagonal 
weighting matrix that can specify different weights for the frequency residual values in different modes. 퐦  is a 
vector whose elements are 1 – MAC values, i.e., 퐦 =  1− MAC φ ,φ , 1− MAC φ ,φ , … .  where 
φ  is the jth computed mode from the FEM when the parameter vector 퐩  is used. 퐖  is a diagonal matrix 
that is used to assign different weights for matching each mode shape. 

3.1. Nelder-Mead Simplex Method 

In this study, the Nelder-Mead Simplex method [12] is used to solve the optimization problem involved in the 
FEM updating procedure. The method is implemented using MATLAB’s Optimization Toolbox [13] that utilizes 
the algorithm developed by Lagarias et al. [14]. The method is one of the most popular direct optimization 
techniques that does not require the computation of gradients. The main procedure of the method can be 
summarized as follows: 

1. Generate an initial simplex with 푛 + 1 vertices (퐩 ), where 푛 is the dimension of the search space. For 
the purpose of model updating, 퐩  is the vector of parameters that are being updated. 

2. Compute the objective function at each vertex of the initial simplex. 
3. Generate a new point by reflecting about the midpoint of the simplex the point with highest function 

value. 
4. Evaluate the objective function at the reflected point. 
5. Change the simplex vertices’ coordinates using reflection, expansion or contraction operators, depending 

on how the function value at the reflected point compares to the function values at the simplex vertices.  
6. Iterate through steps 3–5 until a specified maximum number of iterations is performed or convergence is 

achieved. Typically, convergence is achieved when the function values at the vertices reach a specified 
tolerance or the size of the simplex is reduced below a specified threshold.  

3.2. Model Updating Parameters 

The process of selecting the updating parameters is a very important step in the model updating procedure. In 
many cases, this is done based on engineering judgment as well as geometric and computational considerations. 
It is important to note that, in many cases, the parameters selected for updating will end up assuming non-realistic 
or non-physical values [10], e.g., extremely large/small stiffness, negative stiffness or negative mass. This can be 
attributed to different sources of errors in the measurements, identification and idealizations in the FEM, which 
manifest themselves in producing non-physical parameter values. A proper choice of parameters may help reduce 
this drawback. After examining different sets of parameters, the final set of 21 parameters, summarized in 
Table 3.2, were chosen. 

Using the measurements of forces in the bearings and steel dampers, along with the displacements of the isolation 
layer, the force-displacement curves can be obtained for the isolators (shown in Figure 3.1). The curves show 
behaviors that are dominated by a linear relationship, so linear regression was used to obtain proper initial values 
for these parameters. The fitted isolation stiffness values are summarized in Table 3.1. The initial values for the 
masses were chosen to be zero, while the initial values for the modulus of elasticity for the different structural 
elements were chosen based on the formula provided by the ACI building code requirements for structural 
concrete [15]. 

Table 3.1 Effective stiffness of isolators obtained from linear regression of the force-displacement curves 
Steel Dampers Rubber Bearings Slide Bearings 

4621 kN/m 1050 kN/m 1570 kN/m 
 
 
 
 
 
 
 



Table 3.2 Parameters chosen for model updating 
Parameters Locations Parameters Locations 

퐸  : Young’s modulus of 
Beams in the X direction 

 

퐸  : Young’s modulus of 
Beams in the Y direction 

 
퐸  : Young’s modulus of 
Walls 

 

퐸  : Young’s modulus of 
Columns 

 

퐸  : Young’s modulus of 
slabs 

 

K /K /K /K  : 
Stiffnesses of the two steel 
dampers in X and Y 
directions, respectively. 
 
K /K /K /K  : 
Stiffnesses of the two rubber 
bearings in X and Y 
directions, respectively. 
 
K /K /K /K  : 
Stiffnesses of the two slide 
bearings in X and Y 
directions, respectively. 
 

 

m /m /m /m  : Four 
additional masses added at 
the isolation level. These 
masses were added to allow 
for correcting the mass 
distribution if it is different 
in the model from the real 
structure.  
 
 
 

 
 
 



 
 (a) (b) (c) 

Figure 3.1 Force-Displacement curves of the isolators: (a) Steel Dampers; (b) Rubber Bearings; (c) Sliding 
Bearings 

4. RESULTS AND DISCUSSION 

The match between modal parameters obtained from the FEM and those identified from measurements must be 
examined prior to performing the model updating, as shown in Figure 4.1(a) for the first 6 modes. It is obvious 
from the figure that the frequencies of the first 3 modes correlate well, even before updating the model; this may 
be attributed to the fact that the initial values used for parameters that represent the isolation layer (bearings and 
dampers stiffnesses) were obtained from the experimental results. It was also found that the first 3 modes are ones 
in which the dominant motion is the rigid movement of the super-structure above the isolation layer, which means 
that those modes are highly dependent on the isolation layer properties and less dependent on the superstructure 
properties. It can also be noted that mode shapes 3 and 6 are well paired; for instance, mode 6 in the FEM has 
strong correlation with the 6th identified mode, but it is not strongly correlated to any other identified mode and 
vice versa. On the other hand, modes shapes 1, 2, 4 and 5 are not well paired. For the first two modes, this might 
be attributed to the fact that these two modes are coupled; however, the same argument cannot be made for modes 
4 and 5. 

The Nelder-Mead Simplex method was used to update the selected 21 parameters. The weight matrix in the 1st 
term of the cost function is selected to be 퐖 = c × [diag(퐟 )] , which normalizes the error in frequency by 
dividing it by the target frequency. The factor c is used to scale the first term in the cost function so it has similar 
magnitude to the second term for the first few iterations. The weighting matrix of the second term is an identity 
matrix, which assigns identical weight on each mode shape match.   

  
 

(a)       (b) 

Figure 4.1 Match between the FEM and the identified modes: (a) Initial FEM; (b) Updated FEM 
(values on the axes are frequencies in Hz) 
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The optimization procedure was carried out for 500 iterations; the resulting convergence in the cost function is 
shown in Figure 4.2. The updated FEM matches well with identified mode shapes and frequency as shown in 
Figure 4.1(b). Table 4.1 compares the frequencies and MAC values of the model before and after updating. It is 
important to note that the first 3 modes in the updated model correlate better with the identified values compared 
to last 3 modes. This can be shown by looking at both the MAC values and also the errors in frequencies, which 
is lower by one order of magnitude for the first 3 modes. This can be attributed to the chosen weighting matrices 
and/or the fact that the first 3 modes are highly dependent on the parameters in the isolation layer, whose initial 
values were obtained from fitting the experimental results. In a future study, different weighting might be 
investigated to achieve a better match for the last 3 modes, in addition to introducing additional parameters to 
update the masses in the superstructure.  

 

Figure 4.2 Minimization of cost function value in 500 iterations  

Table 4.1 Frequency and mode shape comparison between the model before and after the updating 
Mode Identified Initial FEM  Updated FEM 

 Frequency Frequency [Hz] (error [%]) MAC  Frequency [Hz] (error [%]) MAC 
1 0.6524 0.6421 (  1.57) 0.4924  0.6545 (–0.32) 0.9295 
2 0.6555 0.6658 (–1.57) 0.6744  0.6580 (–0.38) 0.9487 
3 0.7080 0.7050 (  0.42) 0.7729  0.7081 (–0.01) 0.9271 
4 4.8059 3.7470 (22.03) 0.7355  4.7305 (  1.57) 0.8782 
5 5.1921 4.3270 (16.66) 0.5873  5.4569 (–5.10) 0.8618 
6 7.1617 5.6336 (21.34) 0.9552  6.8643 (  4.15) 0.9669 

 

It is also important to note that the final values of the updated moduli of elasticity were all increased noticeably 
during the model updating, leading to a stiffer model, with very significant increases for the beams and columns. 
Compared to the initial assigned values, 퐸  increased by 104%, 퐸  increased by 28%, 퐸  increased by 71%, 
퐸  increased by 12% and 퐸  increased by 10%. The significant increase in the beams elasticity moduli may be 
attributed to the effect of beam offset from the floor, as projected RC beams often behave as a T-shaped section 
(including adjacent zones from the slab), which results in a significantly higher stiffness compared to that of a 
rectangular section. The increase in elasticity moduli of the columns and walls may be resulting from the 
contribution of the non-structural walls. In many cases, non-structural elements can lead to increase in the vertical 
stiffness as well as the lateral stiffness of the structure as they provide additional coupling between other lateral 
loads resisting elements such as the moment frames and the structural walls. On the other hand, the masses have 
only slightly increased to result in a total additional mass of 18.2 tons, merely a 2.5% increase in the total mass of 
the structure. Though, it has to be noted that the additional masses were not distributed uniformly on the 4 locations 
chosen in the isolation layer, but rather have opposite signs on opposite sides of the building, leading to a slight 
shift in the center of mass of the FEM. 

5. CONCLUSIONS 

In this study, a FEM was developed for the four-story base-isolated building that was tested at the E-defense 
facility in 2013. The FEM was updated using the Nelder-Mead Simplex method to match the identified modes 
and frequencies obtained from system identification. The FEM updating procedure showed a good convergence 
in terms of minimization of the cost function and the updated model shows good agreement with the experimental 
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results. The first 3 modes show stronger correlation with the experimental results compared to the last 3 modes, 
which is probably a result of the chosen weighting matrices and the set of optimization parameters. The updated 
model is significantly stiffer compared to the initial model, as evidenced by the significant increase in the moduli 
of elasticity of all the structural elements; on the other hand, only a slight increase of mass was observed. Future 
studies may investigate obtaining a stronger correlation for the last 3 modes by introducing more optimization 
parameters in the superstructure and investigating the use of different weighting matrices in the optimization 
procedure. 
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