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ABSTRACT  
Hybrid simulation is a versatile, powerful and economical method for modelling large and complex structural 
systems, combining numerical and experimental models. While the hybrid simulation technique has been used 
in seismic simulation, application to the other dynamic loads such as strong wind, hurricane and tsunami have 
been limited. One of the reasons is because displacement based formulation and control used in the conventional 
hybrid simulation are not always suitable. This study explores a force-based formulation in hybrid simulation. In 
particular, a new numerical integration method, called weighted Predictor-Corrector force-based algorithm is 
proposed herein. In the proposed algorithm, force is first predicted in an intermediate step, according to 
responses at the previous step. The predicted force is imposed to the experiment using force control, and the 
corresponding displacement is then measured and sent back to the numerical algorithm. Responses at the next 
step are calculated based on the measured displacement through a correction procedure. Thus, the proposed 
algorithm enables force-based formulation and allows for force control in hybrid simulation. A preliminary 
numerical simulation is performed to verify applicability of this proposed algorithm. The numerical simulation 
demonstrates that this algorithm provides stable and accurate results in force-based hybrid simulation. This 
paper presents details of the algorithm and the preliminary numerical results. 
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1. INTRODUCTION  
 
Natural hazards, such as earthquakes, tsunamis and strong winds, have caused tremendous human suffering and 
damage to structures. In order to reduce the effects of these phenomena, it is imperative to improve knowledge 
and understanding of the response of structures to such natural events. One of the effective approaches for 
investigation of structural responses is hybrid simulation technique. Hybrid simulation provides an alternative 
for dynamic testing of structural systems, combining physical testing and computer modeling (Takanashi et al., 
1975, Mahin and Shing, 1985, Takanashi and Nakashima, 1987). In hybrid simulation, structural elements that 
are difficult to model numerically are generally tested in experiment. 
 
The conventional hybrid simulation technique is displacement-based; procedure is driven by displacement. The 
general procedure in the displacement-based hybrid simulation consists of three phases. In the first phase, 
displacement of the structure is calculated numerically using a time step integration of equations of motion as a 
target displacement. In the second phase the target displacement is imposed to the test specimen and the 
corresponding force is measured. In the last phase, the measured force is fed back to the equations of motion to 
update responses at the current step. While this conventional hybrid simulation technique is suitable and has 
been used in various applications, it has some limitations. For example, the displacement control with extremely 
rigid structure is challenging and the experimental errors are unavoidable because of the displacement 
resolution. Furthermore, simulation of structures subjected to hydrodynamic loads, such as tsunamis, storm 
surge and braking waves require strict force equilibrium conditions between fluid and structure as opposed to 
displacement compatibilities. To overcome these limitations and needs, this study investigates a new 
force-based hybrid simulation technique as a potential approach. 
 
In this paper, a force-based predictor-corrector numerical integration algorithm is proposed. The proposed 
algorithm consists of three phases. In the first phase, force is predicted based on the responses at the previous 



step. In the second phase, the predicted force is imposed to the experiment using force control technique, and the 
corresponding displacement is measured. In the last phase, the measured displacement is sent back to the 
numerical algorithm and responses at the next step are updated based on the measured displacement through a 
corrector procedure. The main difference between the two approaches is that as described above, the procedure 
in the force-based algorithm is driven by the force. This paper presents the details of the proposed force-based 
predictor-corrector algorithm and a preliminary numerical simulation. In addition future studies are discussed.    
 
 
2. FORCE-BASED PREDICTOR-CORRECTOR NUMERICAL ALGORITHM  
 
This section presents the mathematical details and procedure of the force-based predictor-corrector numerical 
time step integration algorithm. In the proposed force-based algorithm, the equations of motion of a structural 
system is expressed as (Hilber et al., 1977):  
 

Man+1 + (1+α)Cvn+1 −αCvn + (1+α)Rn+1 −αRn = (1+α)fn+1 −αfn           (2.1) 
 
where  and  are the mass matrix and damping matrix, respectively; is the acceleration vector;  is 
the velocity vector;  is the restoring force vector;  is the excitation force vector; α is the integration 
parameter (−1 3<α ≤ 0 ); and the subscript n denotes the time step. Suppose responses at the time step n and the 

input forces are given, unknown responses at the time step n+1 that have to be solved are , ,  

and , where  is the displacement vector. Displacement and velocity between the time steps n and n+1 
can be expressed as follows:  

d τ( ) = dn +τΔtvn + τΔt( )
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	   v τ( ) = vn +τΔt(1−γ )an +τΔtγan+1 	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   (2.3) 

where τ is a variable between 0 and 1 (0 < τ ≤1); Δt  is the time interval; and d τ( )  and v τ( )  are the 

interpolated displacement and velocity. Two parameters β and γ in Eqs. 2.2 and 2.3 are defined as 
β = (1−α)2 / 2  and γ = (1− 2α) / 2 . By eliminating  and  in Eq. 2.1 using Eqs. 2.2 and 2.3, the 
equations of motion can be rewritten as:  

   K* τ( )d τ( )+ (1+α)Rn+1 = Pn
* τ( )                          (2.4) 

where  

                            (2.5) 
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                             (2.8) 

Note that the terms with the superscript * are introduced for the sake of simplicity; they can be expressed with 
the known terms. Now, Eq. 2.4 has only two unknowns,	    and . However, because  and 
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 are interdependent, they still cannot be solved explicitly for the step n+1. In order to solve for 

these unknowns, a linearized incremental force and displacement relation between  and  can be 

written. With a condition that  is close to 1, the approximated restoring force at the time step n+1 can be 
estimated as . Substituting approximated restoring force into Eq. 2.4 to eliminate  

and , Eq. 2.4 yields to: 

          (2.9) 

where  is the identity matrix and K  is the initial stiffness that has to be estimated. In the proposed 
force-based algorithm, using Eq. 2.9  which is the approximated restoring force at a specified time at 

, is calculated. Then it is imposed to the experimental and numerical models as the target force, 
, Where  is the target force in the predictor step for time step n+1. Then, corresponding 

displacement  is obtained from experimental measurement and numerical analysis. With , 

acceleration and velocity at the predicted step, and , can be obtained as: 

                                   (2.10)                           

                     (2.11) 

Obtained responses in the predicted step herein may not satisfy the equilibrium, which leads to an unbalanced 
force as:   

 en+1 =Man+1 + (1+α)Cvn+1 −αCvn + (1+α)Rn+1 −αRn +αfn − (1+α) (1−τ )fn +τ fn+1( )  (2.12) 

In the corrector step, this unbalanced force is eliminated. Subtracting Eq. 2.12 from Eq. 2.1, the following 
equation is obtained. 

(2.13) 

To solve Eq. 2.13 for the responses at step n+1, , ,  as well as , incremental acceleration 
is considered as follows: 

                            (2.14) 

Incremental velocity in Eq. 2.13 can be expressed in terms of the incremental acceleration with the velocity and 
acceleration relation between the predictor step and the time step n+1.  

                  (2.15) 

Similarly, incremental force in Eq. 2.13 can be expressed in terms of the incremental acceleration with the 
displacement and force relation.  

          (2.16) 
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Substituting Eqs. 2.14- 2.16 into Eq. 2.13 to eliminate 
 

,  and , the incremental acceleration 
can be solved. 

    (2.17) 

where  express as:  

           (2.18) 

With this incremental acceleration, the responses at the time step n+1 can be updated using Eqs. 2.14-2.16. This 
completes the entire step in the proposed force-base predictor-corrector algorithm. Time step n is incremented 
and the same procedures repeated until the end of the simulation time. The sequence of the above numerical 
algorithm is shown in Figure 2.1. In the first step, the initial parameters such as mass, damping coefficient, 
initial stiffness, integration parameters and , are set to use in the simulation. Then in the predictor step, the 
target restoring force  is computed using Eq. 2.9. In the next step, the computed target force imposes to the 

experiment and the corresponding displacement  is measured. Then, the acceleration  and velocity 

 that are compatible with the measured displacement are calculated using Eqs. 2.10 and 2.11. In the next 

step Eq. 2.12 is used to calculate the unbalanced force  in the predictor step. In the corrector step, the 

incremental acceleration  is computed (Eq. 2.17) to eliminate the unbalance force. In the last step, the 
responses update using the incremental acceleration in Eqs. 2.14-2.16.     
 
 

 
 

Figure 2.1 Schematic of force-based predictor-corrector algorithm. 
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i) Initialization: Set                                  and   

iii) Experiment: Impose         in the experiment and 
measure the corresponding displacement

ii) Predictor: Compute target force 

v) Back calculation: compute acceleration        and 
velocity n = n+1
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vi) Equilibrium check: compute unbalanced force at                                                                                                                                                                           
predictor step  en+1

vii) Corrector: Compute incremental acceleration Δan+1

vii) Response update: Update the responses at step    
n+1 



 
3. MODEL DISCRIPTION 
 
For the examination of the proposed force-based formulation, three linear elastic numerical models are 
considered and described in this section. All of the models herein are single degree of freedom system with 
different natural frequencies. In this study the mass and damping ratio are fixed and natural frequency is treated 
as a parameter. The other parameters such as time interval and integration parameters are constant for all the 
three models: .  
 
As stated previously, the initial stiffness needs to be estimated prior to the implementation of the algorithm. 
However, estimation of stiffness is challenging and estimation errors are unavoidable. In order to account for 
such estimation errors in the numerical simulation, three different cases with the estimation error are considered; 
i) overestimated, the stiffness in the algorithm is estimated higher than the actual stiffness of the structure. ii) 
exact, the stiffness in the algorithm is estimated accurately iii) underestimated, the stiffness in the algorithm is 
estimated lower than the actual stiffness. Kest and Kact are used to denote estimated stiffness and actual stiffness, 
respectively. Table 3.1 shows possible scenarios for the stiffness estimation and natural frequency. The 
investigated cases are marked in the table.  

Table 3.1 Possible scenarios for the stiffness estimation and natural frequency. 
Natural Frequency Kest < Kact Kest = Kact Kest > Kact 
Low (5 Hz) ✓ ✓ ✓ 
Medium (15 Hz) ✓ ✓ ✓ 
High (25 Hz) ✓ ✓ ✓ 

 
Table 3.2 lists structural properties of the numerical models for different cases of natural frequency. 
Furthermore, experimental errors such as noise are inherent in structural tests. To investigate the sensitivity of 
the algorithm to such noise, certain levels of noise are incorporated in the following numerical simulation. 
 

Table 3.2 properties of the numerical models. 
 Mass 

(Kg) 

Damping 
coefficient 

(N s/m) 

Stiffness 
(N/m) 

Natural 
frequency 

(Hz) 

Damping 
ratio (%) 

Model 1 52.7 180.5 0.53×105 5 5.4 
Model 2 52.7 536.3 4.68×105 15 5.4 
Model 3 52.7 722 8.44×105 25 5.4 

  
 
4. PRELIMINARY RESULTS AND DISSCOUTION 
 
A series of numerical simulations are performed to investigate accuracy, stability and sensitivity of the proposed 
algorithm. Several earthquake ground motions are used in this study. Due to a limited space, results of the 
selected simulation cases are presented.  
 
It is observed in the overestimated case, the force-based algorithm is not stable. Therefore the force-based 
algorithm needs to be further refines. In this study the exact and underestimated cases are discussed. Figure 4.1 
(a and b) show the time histories of displacement and restoring force using force-based hybrid simulation for 
model 1 with low natural frequency. As an input ground motion, the JMA record of the 1995 Kobe earthquake 
with the peak acceleration scaled to 2g is used. The estimated initial stiffness is set to be equal to the actual 
stiffness; it means zero errors in stiffness estimations. The noise level corresponding to 10% of the amplitude of 
displacement and restoring force is applied through algorithm. The results are compared with the Newmark’s 
method as a reference and α–OS method (Combescure and Pegon, 1997) as a conventional displacement-based. 
The figure reveals that both displacement and restoring force from the proposed force-based algorithm show a 
good agreement with the reference methods.  
 
Above observations can be further verified using Root Mean Squared (RMS) errors. RMS error means the 
difference between the Newmark’s method results and the force-based algorithm or the α–OS method. The 
results are summarized in Table 4.1. In all of the simulation cases, RMS errors in the force-based algorithm are 
comparable to those in the α–OS method.  
 

Δt = 0.004 sec, τ = 0.9, α = −0.25, β =1.562, γ = 0.75



 

  
(a)  (b) 

 
Figure 4.1 Simulated responses for model 1 with exact estimated stiffness: (a) displacement time histories;    

(b) restoring force time histories. 
 

Table 4.1. Comparison of RMS errors between the force-based algorithm and α–OS method for model 1. 
 Displacement Restoring Force 
 Forced-based Displacement-Based Forced-based Displacement-based 
Kobe, 1995 5.58×10-4 5.22×10-4 29.45 27.52 
Duzce, 1999 1.10×10-3 1.04×10-3 58.45 55.04 
Chichi, 1999 9.61×10-4 9.03×10-4 50.69 47.59 
Northridge, 1994 1.50×10-3 1.43×10-3 79.27 75.63 
Imperial Valley, 1940 1.51×10-3 1.43×10-3 79.69 75.64 
Morgan Hill, 1984 2.12×10-3 2.00×10-3 111.8 105.7 

 
For the higher natural frequency systems, RMS error for model 3 with the same previously used inputs is shown 
in Table 4.2. Estimated error in initial stiffness is zero in this case. It is observed that in the proposed 
force-based algorithm the RMS error is comparable to those in the α–OS method both for displacement and 
restoring force. These prove that the force-based algorithm developed in this study provides accurate results 
when there is no error in the estimated stiffness. 
 

Table 4.2. Comparison of RMS errors between the force-based algorithm and α–OS method for model 3. 
 Displacement Restoring Force 
 Forced-based Displacement-Based Forced-based Displacement-based 
Kobe, 1995 1.32×10-6 8.01×10-6 01.72 01.04 
Duzce, 1999 3.94×10-5 3.17×10-5 51.23 41.28 
Chichi, 1999 2.14×10-5 1.98×10-5 27.82 25.66 
Northridge, 1994 2.03×10-5 1.93×10-5 26.40 26.40 
Imperial Valley, 1940 1.49×10-5 1.35×10-5 19.45 17.58 
Morgan Hill, 1984 9.17×10-6 7.20×10-6 11.92 09.36 

 
To investigate the effect of estimation of stiffness on the proposed algorithm, the estimated stiffness is assumed 
to be 80% of the actual stiffness. Similar to the previous simulation, the same Kobe earthquake record is used. 
The noise level is set as 10% of the amplitude. Figure 4.2 shows a time histories of displacement and restoring 
force comparison between the Newmark’s, α-OS and the force-based algorithm. Differences can be seen 
between the responses obtained from the force-based algorithm and the references ones. However, as the system 
become stiffer, for example for the models with higher natural frequency, the RMS errors decrease. Table 4.2 
summarizes the RMS errors results of model 3 for both displacement and restoring force. The initial stiffness is 
estimated as 80% of the actual stiffness. It is observed that as the model become stiffer, the RMS errors of the 
force-based algorithm become more similar to those of the α-OS method. Comparison of structural responses 
and previous discussion about the error in the estimation of stiffness reveals that for stiff systems, in any case 
the estimated stiffness is equal or less than the actual stiffness, the force-based algorithm is unconditionally 
stable and gives accurate results.    
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(a) (b) 

 
Figure 4.2 Simulated responses for Model 1: (a) displacement time histories and (b) restoring force time 

histories 
 
 

Table 4.3. Comparison of RMS errors between the force-based algorithm and α–OS method for model 3. 
 Displacement Restoring Force 
 Forced-based Disp-Based Forced-based Disp-based 
Kobe, 1995 1.48×10-6 1.11×10-6 13.74 17.87 
Duzce, 1999 3.83×10-5 3.47×10-5 47.74 49.77 
Chichi, 1999 2.23×10-5 2.30×10-5 27.64 33.59 
Northridge, 1994 2.41×10-5 2.30×10-5 27.64 35.03 
Imperial Valley, 1940 2.00×10-5 1.73×10-5 24.53 26.65 
Morgan Hill, 1984 1.61×10-6 1.30×10-6 17.92 19.13 

 
 
4. CONCLUSION 
  
This paper presented an investigation of a new force-based predictor-corrector numerical algorithm. The 
preliminary results showed that the proposed algorithm is in a good agreement with other numerical methods 
when the estimated initial stiffness is equal to the actual stiffness. In addition for underestimated stiffness, the 
numerical simulation demonstrates that the force-based algorithm provides stable and accurate results for stiff 
structure. It was also found that the force-based algorithm is not sensitive to the noise. Further studies needs to 
investigate the effect of other parameters on sensitivity of the algorithm. 
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