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ABSTRACT  

Hybrid simulation combines numerical computation and physical experiment for cost-effective, large-scale 

testing of structures.  The method allows simulation of structures by representing critical components with 

physical specimens and the rest of the structure with numerical models. However, sometimes it is impossible to 

take all of the uncertain or nonlinear parts of the structure as the physical substructure. Then, concern may be 

raised on modeling errors of numerical part. One way to solve this problem is to update the numerical model by 

estimating its parameters from experimental data online. In this paper, a sectional constitutive model which 

considers axial flexural interaction is proposed for force-based frame element. System parameter identification 

is conducted using unscented Kalman Filter (UKF) to estimate the parameters of sectional constitution model 

with the data from the experimental substructure. Hybrid tests were performed, which included the reference test, 

conventional hybrid test and hybrid test with model updating. The results show that the online model updating 

improved the accuracy of the hybrid test of frame structure. 
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1. INTRODUCTION  
 

Hybrid simulation, which combines the advantages of numerical computation and physical experiment, is an 

effective method to evaluate the dynamic performance of structures[1].With substructuring techniques, the 

critical components of the structures are represented with physical specimens while the rest of the structure with 

numerical models[2,3,4], this method has been extended to geographically distributed hybrid simulations  

[5,6,7].Unfortunately, large scale civil engineering structures would undergo severe nonlinearities extensively 

when subjected to strong dynamic loading such as earthquake. It is impossible to take all of the uncertain or 

nonlinear parts of the structure as the physical substructures, usually due to the limited capacity of experimental 

facilities. So the numerical model has to include the nonlinearities of the rest of the structure. Then, concerns 

may be raised on modeling errors of the numerical part.  

 

One way to solve this problem is to update the numerical model by estimating its parameters from experimental 

data online. Yang et al.[8]  employed model updating with a neural network in substructure hybrid simulation. 

Wang and Wu[9] explored model updating with least square for linear model and with constrained Unscented 

Kalman Filter(UKF) for Bouc-Wen model. Yang et al.[10] proposed an online optimization method to update 

the numerical model in bridge hybrid simulation. Kwon and Kammula[11] used several counterpart numerical 

models with possible variation for a experimental specimen and calibrated weighting factors for each one to 

implement hybrid simulation for a braced frame structure. Hashemi et al.[12] illustrated the implementation of 

online model updating in hybrid simulation with UKF for BoucWen models.  

 

The numerical models to be updated in the above studies are relatively simple. They either truss elements or 

concentrated plastic model, and hence are not suitable for beam-column elements with distributed plasticity or 

axial-flexural interaction (AFI). This paper presents a new sectional constitutive model that can account for 

axial-flexural interaction with varying axial force, and then employs UKF to update the parameters of the model 

in hybrid simulation of a frame structure. The paper is organized as follows. First, a sectional constitutive model 

considering AFI  for frame element is proposed in section 1 Then, the parameter identification with UKF are 

presented for online model updating hybrid test in section 3.  Finally, an experimental verification of hybrid 
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simulations for frame structure were conducted using the proposed online model updating method in section 4.  

 

 

2. SECTIONAL CONSTITUTIVE MODEL FOR FRAME ELEMENT 

 
As for beam-column element, there are three levels of constitutive models, i.e., member level, sectional level and 
material level.  Among them the constitutive model in sectional level can achieve good balance between 
accuracy and computational efficiency. Herein, a sectional constitutive model is proposed based on yield surface 
of axial force and bending moment which can account for the AFI, especially when the member is subject to 
varying axial force. 
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Figure 2.1 Generalized forces and 

deformations at the element and section level  

Figure 2.2 H-Section and internal force 

analysis 
Figure 2.3 The schematic of force space and 

force trajectory 

 
For a specified section in a beam-column element, see Fig. 2.1, let [ , ]T

a e represent sectional deformation, in 

which anda  are axial deformation and curvature, respectively;  [ , ]TN Ms represent sectional force, in 

which N and M are sectional axial force and bending moment, respectively. To evaluate the relation between 

sectional deformation and sectional force, some assumptions are made as follows: (1) the plane section which is 

initially normal to neutral axis remains plane and remains normal to the axis after deformation; (2) the stress all 

over the cross-section is assumed to be yield strength for determining the yield surface. 

 

2.1. Sectional kinematic-hardening yield surface 

  
Chan and Chui[13] assumed that the area round neutral axis takes the axial load and the remaining of the 

cross-section resists the moment for I or H cross-section. Taking H section steel as an illustrative example (see 

Fig. 2.2), let
f wA A ，where 

fA denotes the area of one flange, denotes 
wA the area of web. The yield force 

and plastic moment are defined as  
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in which yf  is the yield stress of the material. Based on Chan and Chui’s assumption, the yield surface can be 

expressed as  
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where ( ) s is sectional yield function, and f wA A  .  

The above formulation does not account for the hardening plasticity. Herein, we consider kinematic hardening 

and hence Eq. (2.2) becomes   
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where p
a k seh F k e  is section back force vector, p

e is plastic deformation vector, 
sek is elastic stiffness matrix, 

and kh  is kinematic-hardening coefficient, / (1 )kh b b  ; Fa  contains two components，i.e., [ , ]T

a aN aMF FF . 

 

2.2. Sectional kinematic-hardening constitutive model 

  
With section yield function, the relation of sectional force and deformation can be derived as follows (see Fig. 

2.3). 

When ( , ) 1a s F , the generalized force increment is linearly related to deformation increment as 

s k ese                                     (2.4) 
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k is the elastic stiffness matrix at the specified section, E is the material elastic modulus, A 

is the area of the section, and I is the moment of inertia of the section. 

When ( , ) 1a s F , the section is plastic, and the relation of  generalized forces and deformation is defined in 

an incremental form as 
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3. PARAMETER IDENTIFICATION OF SECTIONAL CONSTITUTIVE MODEL  

 
For the hybrid simulation in this paper, the specimen is a frame column. To estimate the parameters of the 

sectional model based on the displacement and force of the specimen, a finite element (FE) model is needed for 

the column first. 

 

3.1. Finite element modeling of column 

 
There are two classical formulations for beam/column elements with distributed plasticity: stiffness and 

flexibility methods. In stiffness method, displacement interpolation functions are used to derive the element 

deformation, and such elements are called displacement based elements (DBEs).  DBEs may encounter serious 

numerical problems for structures experiencing severe nonlinearity. Often, very fine subdivision of the elements 

is necessary to obtain reasonable results, which can significantly increase computational effort. For flexibility 

method, force interpolation functions are employed to derive the force field inside the element according to the 

equilibrium, and corresponding elements are called force based elements (FBEs).  The force interpolation 

functions in FBE are exact in a strict sense when element loads are not present or ignorable. So the FBE with 

sectional constitutive law is chosen to model the column.  

 

For the problem of parameter identification of sectional model, the input is nodal displacements and output is 

nodal force, and their relation can be expressed in a general nonlinear form as 

e, 1 e, 1 h, 1 e,( , , , )k k k k k  Q F θ Q v q                            (3.1) 

where  
T

e [ , , ]i jN M MQ the element nodal force, 
T

y pM b    θ  the parameter of the yield surface model, 

T[ , , ]e i ju  q  the element nodal displacement, hv  the history-dependent variables in element and section 



levels, and k the incremental step number. For simplicity, the sectional stiffness matrix is not identified in this 

paper. 

 

3.2. State-space model of the column for identification 

 
A discrete-time state-space model is needed to employ UKF for the identification of the sectional constitutive 

model. In general, the state transition equation can be written as 

1( , )+k k k kx x u vG                                  (3.2) 

and the observation equation can be formed as 

( , )k k k k y H x u w                                  (3.3) 

where x , y , and u  are the vectors of state, measurement and input, respectively; v and w are process and 

measurement noises, respectively.  

 

The choices of the state x, measurement y and the input u are problem-dependent. For model updating in this 

paper, the main goal is to estimate the parameters of the sectional constitutive model. Hence, a convenient 

choice is to take parameter  as the state variable x in Equations (3.2) and (3.3). Straightforwardly, the 

measurement y for the sectional model is nodal force vector Qe. Because the nodal force at the k-th step Qe,k is 

determined not only by the nodal displacement qe,k, but also by the nodal force at the (k-1)th step Qe,k-1 and 

history-dependent variable vh,k-1. Then the state variable and the generalized input can be written as   

k kx θ , e, 1 h, 1 e,( , , )k k k k u Q v q                       (3.4) 

Correspondingly, G and H in Equations (3.2) and (3.3) are written as  

1 1( , )k k k G x u θ , ( , ) ( , )k k k kH x u F θ u                       (3.5) 

The problem defined by Equations (3.2) to (3.5) is named pure parameter estimation. 

 

To filter out the noise in the force measurement, which is to be fed back to the numerical part in a hybrid 

simulation, an alternative choice of the state variable is to include the nodal force as well, by moving the nodal 

force from the input into the state variable. Then state space equations (3.2) and (3.3) can be specified with 
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where I is the unit matrix. The problem defined by Equations (3.2), (3.3), (3.6) and (3.7) is called joint 

estimation in this paper. 

 

3.3. UKF FOR ESTIMATION OF SECTIONAL MODEL 

 
The UKF is an extension of Kalman filter to nonlinear systems. In the framework of Kalman filter, a recursive 

estimation for kx can be expressed as[14]. 

 ˆ ˆ ˆ( )k k k k k

   x x K y y                (3.8) 

in which ˆ
k


x  is a priori prediction of kx , ˆ

ky  is the predicted measurement, and Kk is Kalman filter gain; 

their expressions are given below. 
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where ‘E’ denotes the mathematical expectation, and ‘P’ the covariance matrix. For linear systems, the further 

analytical expressions for Equations (3.9) can be obtained, which results in classic Kalman filter. For nonlinear 

functions of G and H, UKF utilizes a so-called unscented transformation (UT) to calculate the mathematical 

expectation and the covariance matrix. In essence, the UT is a deterministic sampling technique to compute first 

two order moment of nonlinear function of a random vector. 

 

The sample points is also called sigma points, which are expressed as 
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in which   and   are constant parameters that determine the spread of the sigma points, and 0 1  ; L 

is the dimension of x; ( )( ) i

kP represents the i-th column vector of the matrix square root of Pk. According to 

UT, we have  
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In Equations (3.13)-(3.16) and (3.19), 
i

mW and 
i

cW are the weights for mean and covariance, respectively, and 

their expressions are  
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where   is used to incorporate a prior knowledge of distribution of the predicted state vector, and  = 2 is 

optimal for Guassian distribution [14]. 

 

3.3.1. UKF for pure parameter estimation 

 

When UKF is applied to the pure parameter estimation of the sectional model, ( )

| 1( , )i

k k kH u  in Equation (3.14) 

is evaluated through a finite element program. It is seen from Equation (3.14), determination of the predicted 

nodal force requires 2L+1 computations with the finite element program for all the parameter samples. Each 

computation with different sample of parameters may result in different set of new history-variables. Note the 

new history-variables will be used as part of the input for the next step. But it is apparent that only one set of the 

historical variables can be used. To cope with this problem, an additional computation is performed with the 

updated parameters from Equation (3.8) to generate the new history-variables. The flowchart of UKF for pure 

parameter estimation is shown in Fig. 3.1. The flowchart herein is similar to that in [15] where the material 

parameter identification was studied with fiber elements. But the former differs the latter in that the extra 

(2L+2)-th FE analysis is performed to provide updated historic variables for the next step.    
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Figure 3.1 Flowchart of UKF for pure parameter estimation 



3.3.2. UKF for joint estimation 

 

The implementation of UKF for the joint estimation is similar to that for the pure parameter estimation. The 

only difference is the finite element program is executed at the stage of state prediction for joint estimation 

rather than at the stage of observation prediction for the pure parameter estimation.  

 

 

4. EXPERIMENTAL VALIDATION 

 
A hybrid test was performed on a frame structure to investigate the performance of the proposed model 

updating technique. The structure in this example was a one-bay one-story steel frame, as shown in Fig. 4.1. The 
span was 6.0m, and the height was 3.6m. The dimensions of the cross-section of the columns and beam are listed 
in Tab. 4.1. For each node, there were three degree of freedom, i.e., two translational and one rotational. A 
lumped mass is placed at each joint of beam and column. The rotational inertia for each node is assumed to be 
20000kgm

2
 for dynamic analysis.   

Table 4.1 The section dimension and features of welding h section steel 

Type 
dimensions (m) Area (A) 

(m
2
) 

Moment of area (Iz) 

(m
4
) d bf tw tf 

HA250×250 0.250 0.250 0.006 0.012 7.35e-3 9.080e-5 

HA300×200 0.300 0.200 0.006 0.012 6.45e-4 1.1010e-4 

 
The seismic excitation to the structure is El Centro (NS, 1940) with a PGA scaled as 220gal. The classical 
Rayleigh damping was adopted and obtained based on damping ratio of 0.02 for the first two modes. 
 
The left column was taken as the experimental substructure and loaded by three actuators, as seen in Fig. 4.2 at 

the Structural and Seismic Testing Center of Harbin Institute of Technology. The remainder of the structure was 

numerical substructure, in which the column was modelled by a force based beam-column element with section 

constitutive model described in Section II, while the beam was just modelled by an elastic beam element. The 

parameters to be updated were those of the column; and that of the beam remained unchanged. The column as the 

experimental substructure was also modelled by the nonlinear beam-column element in order to identify the 

sectional model parameters. For each column, five cross-sections were chosen for Gauss-Lobotto integration at 

the phase of element state determination. 

 

All the numerical modelling and parameter identification was programed with MATLAB. The displacements of 

the interface between numerical and physical substructures calculated with MATLAB were transmitted to 

dSPACE through OpenFresco [16]. Then dSPACE sent the displacements to the controller of the actuators 

through three signal cables, and received the force measurements through other three cables, and feedback the 

force data for MATLAB to identify and update the sectional model parameters and calculate the next step 

response. 
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Figure 4.1 The computing model of 1 storey 1 bay  

steel plane frame 

Figure 4.2 Tri-actuator Setup for experimental 

substructure: Column 1 

 

Three cases were considered to demonstrate the effectiveness of sectional model updating with UKF: (A) with 

fixed parameters that were calculated based on the data of material test, (B) with the fixed parameters of which 



the yielding forces were calculated based on the nominal yield strength of 235MPa of the steel, and the 

kinematic hardening coefficient took value of 0.015, and (C) with online updating with the initial parameters 

that were the same as in Case B. Case A served as the reference solution.  

 

Tab. 4.2 lists the initial guess of the sectional model parameters for both Cases B and C. In Case C, the variation 

of the estimated parameters was constrained by their limits. The lower and upper limits of Ny and Mp were 

calculated based on the yield strength of steel material of 215 MPa and 315 MPa, respectively. The range of b 

was set by experiences. When the estimated parameters exceeded their limits, they would be replaced by the 

limits.  

 

In Case C, the joint estimation with UKF was adopted. The parameters of scaled unscented transform[14] of UKF 

were 0.5  , 2   and 3   . The covariance matrices of process and measurement noises were 10
-2

I66 

and 0.5I33, respectively. The initial covariance matrix of the state vector was 

 

y p

2 2 2 2 2 2 3 3 4 8 8 8

0 diag([ , , , , , ]) diag([10 ,10 ,10 ,10 ,10 ,10 ])
i jN M b N M M          P      (4.1) 

 
To reduce the computational effort in case C, the (2L+2)-th FE calculation was canceled, whose consequence 

was the loss of consistent historical variable for the next step. In this way, the (2L+1) sets of history-variables 

resulted from the related parameter samples were transferred to the next step as the inputs for computation with 

corresponding new parameter samples. Although the mathematical rigor was lost to some extent in doing so, the 

effects of the identification appeared satisfactory as will be seen later on. 

Table 4.2 Parameters of the sectional constitutive model for left column 

Parameter

s 

Initial 

guess 

Lower 

limit 

Upper 

limit 

Finial 

estimation 

Reference 

Value 

Ny 1728.7 1581.5 2322.9 2075.5 2059.7 

Mp 185.8 170.0 249.4 223.3 221.4 

kh 0.015 0.010 0.040 0.208 0.030 
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Figure 4.3 Time histories of roof horizontal 

displacement . (Case A vs Case B vs Case C) 

Figure 4.4 Moment vs. curvature at bottom section of 

column 2 (Case A vs Case B vs Case C) 

 

Figs. 4.3 and 4.4 show the horizontal displacement responses at top of the column of the numerical substructure 

and moment-curvature hysteretic loops at the bottom cross-section of the column. In Fig. 4.3, we see that the 

displacement response with online model updating (Case C) was closer to reference solution (Case A) than that 

without parameter updating (Case B). The differences of Case B and the other two cases can be seen more clearly 

from the hysteretic loops as shown in Fig. 4.4. These indicate the advantage of the proposed model updating 

method over conventional hybrid test without updating. The time-histories of the model parameters are shown in 

Fig. 4.5. It is seen that all the parameters converged to the final values after around 2.2 s. The errors of axial 

yielding force, plastic moment and kinematic hardening coefficient relative to the references were 0.768%, 

0.894%, and 4.67%, respectively; they were much improved than the initial parameters. 
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Figure 4.5 Time history of the updating parameters 
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