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ABSTRACT 
An interface element method is proposed to couple multiple subdomains. The overall stiffness matrix of a 
coupled structure is first formulated separately considering the stiffness matrices of subdomains and the stiffness 
matrix of interface elements. The method essentially introduces boundary confinement forces to substructures, 
and builds up the equilibrium and compatibility on the common boundaries between subdomains. Considering 
the tested substructure in an online hybrid test, the boundary stiffness matrix cannot be obtained explicitly. The 
static condensation technique and the BFGS method are further introduced. Only boundary forces and 
displacement are implemented to realize the coordinating between subdomains, while the common nodes 
between subdomains are not necessary. Finally, the nonlinear time history analysis was conducted on a 
cantilever beam with a concentrated mass, which fully demonstrate the feasibility and accuracy of the interface 
element method. 
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1. INTRODUCTION  
 
In the past decade, various geographically distributed hybrid tests have been conducted between different 
laboratories including remote experimental and numerical substructures. Park et al. [1] conducted several rounds 
of distributed tests on a base-isolated bridge with multiple piers. Two rubber bearings were tested at two 
distributed laboratories, each bearing loaded by two hydraulic actuators. More recent efforts have focused on 
developing a general software framework for hybrid experimental-computational simulation such as 
OpenFresco at the University of California, Berkeley [2]. Demonstration tests included a base-isolated bridge 
pier tested collaboratively between Japan and U.S with only one rubber bearing tested using three quasi-static 
jacks. Another hybrid test framework, Internet-based Simulation for Earthquake Engineering (ISEE), was 
developed at National Center for Research on Earthquake Engineering (NCREE), Taiwan [3]. A three-site 
hybrid test was conducted on three piers of a multi-span continuous bridge. Each laboratory handled one pier 
using two hydraulic actuators. Mosqueda et al. [4] conducted a five-site collaborative test within the George E. 
Brown Network for Earthquake Engineering Simulation (NEES) [5] laboratories in the U.S. Five piers of a 
six-span bridge were taken as the substructures, in which two were physically tested, each using one hydraulic 
actuator, while the others were numerically simulated. Also as part of NEES, a hybrid test framework 
UI-SIMCOR was developed at the University at Illinois at Urbana-Champaign [6]. Recently, a three-site large 
scale bridge hybrid test was conducted with two experimental sites, each loading one pier by two hydraulic 
actuators. Most past distributed hybrid tests have been on multi-span bridges with the piers as substructures. 
This model provides relatively simple boundary conditions that could be controlled by limited number of 
actuators. Further, few hybrid tests have examined structures up to collapse with significant geometric and 
material nonlinearities [7, 8]. A key step in a hybrid test to collapse is partitioning the structure to capture the 
collapse mechanism experimentally while properly enforcing boundary conditions.  
 
2. THEORY OF INTERFACE ELEMENT METHOD 
Interface elements are virtual elements without material definitions. Only virtual nodes and interpolation 



functions are defined for interface elements, so that they serve as coordinating components between subdomains. 
Considering a generalized structure shown as Fig2.1, the structure is partitioned into two independent 
subdomains, denoted as Ω1 and Ω2. Suppose q is the displacement field, then each subdomain is spatially 
discretized into finite elements, where superscript i represents the boundary degrees of freedom, while 
superscript o stands for internal degrees of freedom of each subdomain. To couple the two subdomains, 
interface elements are defined as the domain v where all variables are denoted by the subscript s. Given two sets 
of shape functions, the displacement fields of each subdomains can be represented by Eqs. 2.1 and 2.2:  
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Figure 2.1 Interface elements and subdomains 
 
Then the potential energy of the overall structure can be formulated as Eq.2.3 by introducing the Lagrangian 
multiplier, where K is the stiffness matrix, f is the external force, and λ is the Lagrangian multiplier. It is also 
possible to be reformulated as Eq. 2.4 where R is the shape function and α is the confinement force vector. Then 
conducting the variational principle on the potential energy with regards to the displacements of each subdomain 
and the confinement force vector, the equilibrium equation can be obtained, as Eq.2.5. The matrices M and G 
are expressed as Eqs. 2.6 and 2.7, respectively.  
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3. STATIC CONDENSATION TECHNIQUE AND BFGS METHOD 
 
The objective of employing interface elements is to coordinate subdomains in a hybrid test framework. However, 
one issue has to be solved before the hybrid test application, which is the effective searching of boundary 
displacements. It is traditionally found by using of Newton method where the stiffness matrix is repeatedly used 
to find the accurate solution. Meanwhile, the stiffness matrix is updated considering the material and geometric 
nonlinearities. This is not feasible in a hybrid test since the encapsulated subdomains does not provide the 
stiffness matrix to the coordinator. What can be used are just the displacements and forces of common 
boundaries, as shown in Fig.3.1.  
 
Given a structure external excitation and prescribed boundary conditions, the state variables can be fully 
determined. The reaction forces at the given boundaries can be obtained by the static condensation procedure 
and the Newton solution process. The static condensation is deemed as the feasible way to find the dynamic 
states of each subdomain for the condensed boundary stiffness and effective forces actually represent the entire 
subdomain. Take one subdomain as the example. The govern equation is shown as Eq. 3.1. With the static 
condensation procedure, only items associated with boundary degrees of freedom remains, as Eq. 3.2, where the 
left stiffness matrix can be defined as Kboundary, while the left can be denoted as effective force fboundary. Therefore, 
Eq. 2.5 can be reformulated as Eq. 3.3.  
 
Finally, the issue becomes to be how to get the boundary stiffness matrix Kboundary, and nonlinearities shall be 
considered in this process. Considering only boundary displacements and forces can be implemented, it is thus 
feasible to employ quasi-Newton procedure to solve this nonlinear problem unnecessarily formulating the 
stiffness matrix of the entire subdomain. Considering a general structure as shown in Fig.3.1, it is divided into 
two substructures. The initial stiffness matrix associated with boundary degrees of freedom of each substructure 
is given but not necessarily accurate. Given an external load and prescribe boundary condition, each 
substructure is analyzed in a selected finite element program, and the reaction forces corresponding to the 
boundary can be obtained. This provides enough information to update the boundary stiffness by using of the 
quasi-Newton procedure, using the incremental displacement and force vectors, denoted as Δ1qn

i, Δ2qn
i, Δ1Ψn

i, 
and Δ2Ψn

i, respectively for substructure 1 and 2 as shown in Fig.3.2, where a typical BFGS method is used. 
Once the matrix of each substructure is obtained, the global stiffness matrix is assembled with the displacement 
vector of interfaces qs and the constraint force vectors α. Then this equation is solved to obtain the displacement 
increment which is further used to update the boundary displacement for the next step iteration. The iteration 
process stops until the convergence criterion is reached.  
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Figure 3.1 Cantilever beam collaboratively solved using interface elements and BFGS method 
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Figure 3.2 Iterative procedure of BFGS method combined with interface element technique 
 
4. DYNAMIC EXAMPLE 
To demonstrate the feasibility, the dynamics of a cantilever plate is examined, as shown in Fig.4.1. The height is 
1 m, and the length is 2 m. It is a plane stress plate model intentionally meshed with different densities. The left 
part was fixed and only one element was used, while the right part was meshed with 2 x 2 grid. Each node has 
two degrees of freedom, vertical and horizontal displacements specifically. Node 2 was coupled with node 5 in 
both vertical and horizontal directions, and node 4 was coupled with node 11 in the same way. Node 8 belongs 
to the right part, and has identical horizontal displacement as Nodes 5 and 11. The young’s module is 21000 Pa, 
the poisson ratio is 0.3, and the thickness of the plate is 0.025m. The strength is 300Pa. There’s a concentrated 
mass of 31.2kg associated with Node 10.  
 
The cantilever plate was then partitioned into two subdomains. One only has one element, while the other has 
four elements. Two interface elements are used with a linear interpolation function, which coordinate the two 
subdomains perfectly. ABAQUS is used to simulate the two substructures independently considering a bilinear 
material model with the isotropic hardening rule. To form the coordinated govern equation, the boundary 
stiffness matrix and force vector associated with each substructure are identified by use of quasi-Newton 
method.  
 
Ten seconds of simulation was conducted. The horizontal responses of the hybrid simulation matched well with 
the overall numerical simulation, as shown in Fig.4.3 where both horizontal and vertical displacements were 
compared. The force-displacement relationship of the entire structure is shown in Fig.4.4. It is demonstrated that 
the responses were well reproduced by the hybrid simulation using interface elements. Further, the displacement 
in the vertical direction at Node 8 is given in Fig.4.5. Considering the structure is symmetric, the theoretical 
response of Node 8 in the vertical direction shall be zero, while the maximum displacement of the vertical 
degree of freedom of Node 8 is about 1e-5m, much smaller than the vertical displacement at Node 5, 1.0e-2m. 
The error is so small that the global response is deemed accurate.  
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Figure 4.1 Overall FEM model using Abaqus      
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Figure 4.2 Substructures and interface elements for static analyses 

 

    
   (a) X-direction                                 (b) Y-direction 

Figure 4.3 Displacement response of Node 5 
              

 



Figure 4.4 Force displacement relationship 

      
 

Figure 4.5 Displacement of node 8 in y direction       
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