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ABSTRACT 

The objective of this study is to improve the conventional stochastic subspace system identification method in 

order to advance structural health monitoring. To obtain qualitative identified modal properties, this 

conventional method requires expensive computational power to deal with a large set of measurements. 

Therefore, this study proposes an automated stochastic system identification framework that improves the 

computational efficiency and quality. This framework consists of 1) signal preprocessing, 2) order 

determination, 3) efficient system identification, and 4) mode assurance. Signal preprocessing removes some 

noise and uncertainties from the measured responses of a structure. The order determination attempts to give the 

number of possible natural frequencies that is equivalent to the number of states used in system identification. 

The efficient system identification modifies the conventional method by integrating a reduced-dimension 

Hankel matrix and efficient orthogonal projection with the state-space realization and modal extraction. 

Consequently, the mode assurance utilizes the kernel density estimation and singular value decomposition to 

categorize the assured modes. The proposed identification framework is applied to the field measurements of a 

cable-stayed bridge. The results show that the automated framework saves a large amount of computational 

time, while qualitative modal parameters are still attained. 
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1. INTRODUCTION  
 

Performance of civil infrastructure directly affects public safety and society cost. Civil infrastructure refers to the 

integration of various systems such as buildings, bridges, transportation networks, lifeline, etc. Components in 

such systems need to be functional; otherwise, a huge amount of economic loss and dead lives would occur and 

impact the entire society. For example, the I-35W Mississippi River Bridge collapsed on August 1, 2007, resulting 

in 13 people killed and 145 people injured. A replacement bridge, the I-35W Saint Anthony Falls Bridge, was then 

constructed and opened on September 18, 2008. The estimated users’ economic loss was US$71,000 to 

US$220,000 a day, while more than 50,000 users needed to reroute [1]. This example demonstrates that deficient 

and aging infrastructure systems require diagnosis of present conditions to prevent catastrophic failures. Thus, 

structural health monitoring (SHM) is of need to early identify these problems in structures [2, 3]. 

 

Operational modal analysis is to extract the dynamic characteristics of structures based on the structural 

vibration responses. These dynamic characteristics are composed of natural frequencies, damping ratios, and 

mode shapes. Deviations in these dynamic characteristics reflect the changed properties of structures. Detailed 

inspection may be required for the structures. A number of researchers applied system identification to 

real-world structures for operational modal analysis such as Farrar and James [4], Brownjohn [5], Lynch et al. 

[6], Siringoringo and Fujino [7], Weng et al. [8] and Jang et al. [9]. With growth of sensing technology, 

structural health monitoring has drawn a lot of attentions to researchers in order to assure structures of their 

serviceability and safety. Structural integrity can be then studied through operational modal analysis to the 

sensor measurements of structures. 
 

Due to unavailable input excitation, the operational modal analysis is directed to the stochastic system 

identification. This type of system identification methods is emphasized on assessment of structures through the 

structural response outputs. In terms of time-domain approaches, one popular method is stochastic subspace 
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system identification (SSI) proposed by Van Overschee and De Moor in 1991 [10]. This method utilizes the 

orthogonal projection to obtain the extended observability. By solving the extended observability matrix, the 

system and measurement matrices in a stochastic state-space model are derived. Information about the modal 

parameters are obtained from these two matrices. The SSI method has been proven to be numerically stable, 

robust to noise, and applicable for non-stationary excitations. Peeters and De Roeck in 1999 further extended the 

SSI method to address the shortcoming of computational efficiency [11]. Peeters and De Roeck in 2001 also 

proposed the stabilization diagram for SSI to enhance the quality of identification results [12]. Even though such 

methods are available for operational modal analysis, both identification efficiency and quality are still a concern. 

 

One of commonly seen problems in SSI is the noise modes obtained in results. This noise modes may be reduced 

or removed by means of time series analysis prior to system identification. A novel technique of time series 

analysis is the singular spectrum analysis (SSA). By forming delayed coordinates of measured signals, a Hankel 

matrix is established. Utilizing SVD, the principle components in a time series can be distilled. A number of fields 

has employed SSA to investigate the trend and periodic components to various components. The early 

development of SSA includes the publications by Broomhead and King in 1986, Fraedrich in 1986, and 

Broomhead et al. in 1987 [13-15]. In 1996, Elsner and Tsonis reorganized the content and prepared a textbook 

regarding SSA [16]. Moreover, SSA is applicable to not only a single time series but also multi-channel time 

series. For structural health monitoring applications, a large amount of data are measured from structures. When 

applying SVD to the Hankel matrix, the loading in computation becomes a problem. Further reductions on the 

dimension of the Hankel matrix is a solution to expedite the computational rate as well as to be suitable for 

structural health monitoring problems. 

 

Another possible reason to result in noise modes in identification results is the orthogonal projection. Yang and 

Nagarajaiah in 2014 found that the outliers in measure signals can contaminate identification results and introduce 

noise modes to be obtained [17]. Moreover, the low-amplitude signals in measurements can also induce the 

difficulty in the calculation of a subspace through the orthogonal projection. To effectively eliminate the noise 

modes in identification results, these unfavourable components need to be removed in advance. 

 

As introduced in [12], a stabilization diagram is helpful for determining true modes in identification. However, 

establishing a stabilization diagram may take a large amount of time, especially state-space realization. Many 

studies developed a series of methods that allow determining the number of states [18-20].  The resulting number 

of states from these methods is tended to be overestimated. Thus, these methods can be employed in a stabilization 

diagram to limit the numbers of states used. To accelerate the determination of true modes, modifications should 

be made to a stabilization diagram. 

 

In this study, an automated stochastic subspace 

system identification framework is developed. 

This framework consists of 1) signal 

preprocessing, 2) order determination, 3) 

efficient system identification, and 4) mode 

assurance. The signal preprocessing 

preliminarily processes the measured signals 

using the detrending, resampling, and singular 

spectrum analysis techniques, and renders 

reduced noise and uncertainties in signals. The 

order determination recognizes the possible 

natural frequencies from the multi-channel 

power spectral density (PSD) distribution 

over time, resulting in a range of orders (or numbers of states) that will be used in the stochastic state-space 

realization. The efficient system identification utilizes a reduced-dimension Hankel matrix and modified 

orthogonal projection to efficiently realize multiple stochastic state-space models and then to extract numerous 

sets of modal parameters. The mode assurance consequently distills most likely modes from these identification 

sets using the kernel density estimation to natural frequencies and the singular value decomposition to a matrix set 

of mode shapes. By integrating these four components, the framework is sought to automate stochastic system 

identification using minimized user-defined parameters. The proposed stochastic subspace system identification 

framework is evaluated by the field measurements to a cable-stayed bridge in Taiwan. The identification results 

illustrate that the efficiency and quality of the proposed method is superior to those of the conventional stochastic 

system identification approach. 

 

 

Figure 1.  Framework of proposed stochastic subspace 

system identification. 
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2. FRAMEWORK OF IMPROVED SYSTEM IDENTIFICATION METHOD  
 

Figure 1 illustrates the automated stochastic subspace system identification framework. This improved method 

contains four sequential components: 1) signal preprocessing, 2) order determination, 3) efficient system 

identification, and 4) mode assurance. In the following, each component are described in detail.  

 

In this study, the proposed system identification method is developed in accordance to the stochastic state-space 

model for a structure. The stochastic discrete-time state-space model is defined by 
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where x and y are the state and output measurement vectors at time step, k; Ad and Cd are the system and 

measurement matrices in the stochastic state-space representation; and w and v are the input and output noise. The 

time span is defined as  1,k N  where N is the total number of samples. 

 

2.1 Signal Preprocessing 
 

Noise is a critical issue in signal processing. The stochastic subspace system identification can account for the 

Gaussian white noise; however, non-white noise may be irreducible that could induce unanticipated modes in the 

identification result. Structures usually have the components with high energy in the range of low frequencies. 

Resampling signals to the frequency range of interest is an approach to limit the frequency content in low 

frequencies. When decimating signals in resampling, a polyphase filter should be employed to avoid the aliasing 

effect [21]. An appropriate resampling rate can be determined by observing the power spectral density of signals.  

 

The last approach considered in the preprocessing is to utilize the singular spectrum analysis. SSA is a novel and 

powerful tool that makes a decomposition of the original series into a sum of a small number of independent and 

interpretable components [13, 16]. Moreover, SSA can be extended to Multi-channel Singular Spectrum Analysis 

(MSSA) for a multivariate time series of vectors at concurrent moments at a same or different location(s) [15]. 

SSA or MSSA consists of three steps: embedding, singular value decomposition, and reconstruction. SSA has 

been widely studied by researchers, and the details about the SSA theory are available in Elsner and Tsonis 1996. 

In the following, MSSA is briefly summarized. The basic concept of MSSA is to find a transformation matrix that 

satisfies 
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where Y is the extended Hankel matrix (or the delay coordinates) with a specific delay, h; l is the window length 

each column vector; nc is the number of delays in the row; T is the transformation matrix; and (I-T) indicates the 

noise or less significant components in the Y space. The transformation matrix represents the mapping of most 

significant components in the space of the measurements, y[k]. 

 

Embedding in SSA is to form an extended Hankel matrix such as Y in Eq. (2). In the SSA or MSSA theory, h in Eq. 

(2) is typically equal to 1; l should be in a range of 2~N/2; and nc is equal to N-l+1. To reduce the dimension in 

embedding, an additional parameter, h, is introduced. A smaller size of the extended Hankel matrix can expedite 

the rest of the SSA process (e.g., singular value decomposition and reconstruction). When using h, some rules 

should be satisfied such as 
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Singular value decomposition in SSA is to obtain a transformation matrix. When Y in Eq. (2) is decomposed by 

SVD, the transformation matrix can be represented by 
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where Λ  is a matrix which contains nonnegative singular values of Y in diagonal terms; U and V are unitary 

matrices. The singular values in Λ  are in a decreasing order so that the first few column vectors in Um indicate 

the most significant components in the space of Y. Assume that the number of modes in noise-free structural 

measurements is known, and the number of significant components are equal to two times of number of modes; 

the rest of singular values are very close to zero. Consider structural measurements with noise, and the rest of 

singular values will be nonzero.  

 

The final step in MSSA is the reconstruction that averages out the processed measurements (e.g., TY). When 

single-channel measurements are considered and h equals 1, the reconstruction can be completed by the diagonal 

averaging of TY [16]. For MSSA, a block-diagonal averaging method can be applied if h is equal to 1. When h is 

greater than 1, the reconstruction can be completed by a similar approach, counting the number of occurrences per 

step in Y and then averaging the signals at a step by this number. The reconstructed signals contains the most 

dominate components in a structure.  

 

2.2 Order Determination 
 

This study proposes a quick approach that employs the SVD to multi-channel PSD-time distribution to first 

determine the order number. A PSD-time distribution exploits a short-time Fourier transform to generate a matrix 

of which each column represents the short-term, time-localized frequency content of a single-channel signal. In 

contrast to a frequency-time distribution, the PSD-time distribution is focused on the signal magnitude of the 

frequency content, given by 
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where G1 represents a PSD-time distribution from the channel 1; g  is a power spectral density at a frequency 

and time; ω  and t are frequency and time vector. Each column of G1 denotes a small segment of a time series. 

Each time segment can have an overlapped region with other segments. Windowing is recommended to use in the 

Fourier transform. The time in each column corresponds to the center of each segment. Presenting a PSD-time 

distribution in a colored plot can clearly show the major frequency components in a time series.  

 

For multi-channel signals, a PSD-time distribution can be formed by stacking Eq. (5) in a row. This is because the 

focus of this approach in this study is to observe the number of natural frequencies. Similar to the principle 

component analysis, applying SVD to a PSD-time distribution can derive a principle component that corresponds 

to the most significant frequency content of multi-channel signals such as 

  1 2 1 1 1 r r r

T T

n
  G G G G u v U Λ V   (6) 

where G  is a multi-channel PSD-time distribution with n-channel signals; u1 is the first (or principle) 

component in terms of frequency, corresponding to the largest singular value, 1


, with a right-singular vector, v1; 

and Ur, r
Λ

, Vr are the less significant singular vectors and values. u1 will be employed to preliminary find the 

number of natural frequencies using the peak-picking method. 

 

2.3 Efficient System Identification 
 

The efficient system identification improves the conventional data-driven stochastic subspace system 

identification method [10]. The improvements include a reduced-dimension Hankel matrix and efficient 

orthogonal projection. With this efficient system identification, the computational time is significantly lessened. 

 

 

 



Reduced-dimension Hankel Matrix 

 

As described in [10], a Hankel matrix is formed in the beginning of the SSI method. Similar to Eq. (2), the Hankel 

matrix, H, is composed of the processed measurements, given by 
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where the subscripts, “p” and “f”, denote the “past” and “future” delay coordinates, and y  is the processed 

measurements using the preprocessing methods. The purpose of forming the Hankel matrix is to obtain a column 

subspace through projection. However, the subspace may be derived a low-resolution projection if the column 

vectors in H has some small numbers. Thus, the improved method introduces a criterion that eliminates 

“ill-conditioned” column vectors in H. These ill-conditioned column vectors can be viewed as those have lower 

norms. Define that the column vector has the maximum norm in H as hmax, and then only those column vectors 

having a norm greater than maxh
h are retained, given by 
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where mh is the number of columns in H . Utilizing Eq. (8), H  is derived with a reduced dimension, as well as 

the column vectors which may induce the projection errors are deleted. 

 

Efficient Orthogonal Projection 

 

The second step in the proposed SSI method is projection that allows one or multiple subspace(s) to be obtained. 

In Eq. (7), the Hankel matrix is divided into the past and future portions. As given in [10], the projected subspace 

is calculated using the past and future matrices in Eq. (8) and defined as 
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where O is the projected subspace. Consider using SVD to represent Yp and assume that Yp is a low-rank matrix, 

and then Eq. (9) can be simplified as 

 
f p f p,m p,m f p,m

p p,m p,m p,m p,0 p,0 p,0

/
T

T T

 

 

Y Y Y V V Y V

Y U Λ V U Λ V

  (10) 

where the subscripts, “m” and “0”, denote the main and null spaces. All singular values in 
p,0

Λ are assumed to be 

close to zero. 
p,m

T
V  in Eq. (10) is neglected because this matrix can be a similarity matrix to both extended 

observability and controllability matrices in the SSI theory. Therefore, a projected subspace is derived from 

f p,m
Y V . 

 

In [10], a Hankel matrix in Eq. (7) only supports one subspace to be obtained. The separation line in this Hankel 

matrix yields an identical dimension of the past and future submatrices. Thus, the two submatrices result in the 

extended observability and controllability matrices with an equal number of rows and columns, respectively. 

However, the separation line can be shifted as long as the resulting past and future submatrices have a number of 

time lags greater than the number of system states. Shifting the separation line results in multiple subspaces to be 

obtained and multiple sets of modal parameters to be compared. 

 

State-space Realization 

 



After a projected subspace is obtained, the next step in the efficient system identification is state-space realization. 

Because the projected subspace represents the product of the extended observability and controllability matrices, 

SVD is employed to separate these two matrices. Then, the system and measurement matrices, Ad and Cd, are 

calculated by 
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where the subscripts, “m” and “0”, denote the main and redundant components in the product of the extended 

observability and controllability matrices; Γ  represents the extended observability matrix; and  
†

 denotes 

the pseudo inverse. Ad is derived from Eq. (11), and Cd is obtained from the first block matrix in Γ . 

 

Mode Extraction 

 

The objective of the efficient system identification is to derive the modal parameters by a given number of states. 

Applying eigen analysis to Ad renders complex-valued natural frequencies and mode shapes with respect to the 

states. Thus, all modal parameters in each mode are represented by 
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where d
 is one of the eigenvalues in Ad; 

*

d
 is the complex conjugated d

 ; η  is the eigenvector with respect 

to the state vector; n
  and   are the natural frequency and damping ratio; t is the sample time; and φ is the 

mode shapes with respect to the outputs. By calculating all eigenvalues and eigenvectors from Ad, the modal 

parameters can be extracted. 

 

2.4 Mode Assurance 
 

The mode assurance is to acquire most likely modal parameters from a variety of identification results. In the 

proposed framework, various sets of modal parameters are extracted by a number of separation lines to Eqs. (7, 

10) and a range of orders to Eq. (11). Using the kernel density estimation and SVD to a grouped mode shapes 

matrix, the most significant modal parameters are obtained. 

 

Grouping 

 

The kernel density estimation [23] serves as a role to group various natural frequencies into several sets. This 

grouping process is to isolate stable natural frequencies from spurious ones. The kernel density estimation is a 

non-parametric approach to estimate the probability density function of an array as well as to cluster an array into 

several segments. Thus, the kernel density estimation to an array of natural frequencies is written by 

  
f

k id

k

1f k k

1
m

i

f K
m h h

 




 
  

 
   (13) 

where the kernel function is defined as 
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 k
f   is a probability density function of k

  ; hk is a bandwidth to the kernel function; mf is the number of 

natural frequencies in an array; and 
id

  is identified natural frequencies. If multiple sets of modal parameters 



show up the same natural frequency, the probability density will be large at this frequency. Note that this study 

employs the Gaussian normal distribution with zero mean as the kernel function; different kernel functions can be 

used. A group of modes are initially determined through the peak-picking method to Eq. (13). 

 

SVD to Grouped Mode Shapes 

 

After grouping modes using Eq. (13), a mode shape in a specific mode is determined by applying SVD to a 

grouped mode shapes matrix. Ideally, if a matrix contains identified mode shapes to a specific mode, applying 

SVD to these mode shapes will show up the mode shape in the first singular vector, such as 
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where 
1

ms

n
u  and mg is the total number of mode shapes in a group. To determine whether the singular 

vector, ums, is the mode shape, the following criteria is used as 
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Repeating the same procedure, the most likely modes are determined by utilizing Eqs. (13-16) to all sets of modal 

parameters. 

 

3. APPLICATION TO FIELD TEST MEASUREMENTS 

 
This study applied the proposed system identification framework in a structural health monitoring problem of a 

cable-stayed bridge in Taiwan. This cable-stayed bridge, named as the Gi-Lu Bridge, was damaged during 

construction by the Chi-Chi earthquake in 1999. Then, this bridge was retrofitted and completed with the 

construction in 2004 [8, 22]. The structural engineers who designed and constructed this bridge were quite 

concerned about the current condition of this bridge. To ensure the users safety and bridge integrity, a series of 

structural health monitoring campaigns were carried out in 2006-2008.  

 

The parameters used in the proposed system identification framework is first presented. The structural responses 

collected are velocities, and the total duration of measurements is 150 seconds. Ten sensor locations with respect 

to the bridge dimension are exhibited in Figure 2. These 10 sensors are denoted as “V01-V10” in the figure. The 

vertical velocity responses are used in the system identification. These measurements are recorded at 100 Hz.  

 

Figure 3 illustrates the assured modes after performing the proposed system identification framework. The total 

number of successfully identified modes is 10.The results are quite comparable to the study in [8], though two of 

modes are deviated. In comparison of computational time, 341 runs performed using the proposed method is about 

1-2 minutes, while the conventional approach including the stabilization diagram needs at least 10 minutes using 

the same computer. For system identification, the proposed framework is able to attain the computational 

efficiency and qualitative results. 

 

 
 

Figure 2. Sensor setup for bridge deck measurements. Figure 3. Identified natural frequencies from the field 

measurements of a cable-stayed bridge. 
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4. CONCLUSIONS 

 
This study proposed an automated stochastic subspace system identification framework that can enhance the 

efficiency and quality in operational modal analysis. In this framework, all measured signals were preprocessed to 

reduce noise levels and uncertainties. Orders to the state-space realization were determined into a range by the 

singular value decomposition to a multi-channel PSD-time distribution. The efficient system identification was 

realized by introducing a reduced-dimension Hankel matrix combined with an efficient orthogonal projection. 

This combination rendered multiple subspaces that allowed more sets of modal parameters to be collected. 

Assured identified modes were consequently determined by the mode assurance process of which a kernel density 

estimation was employed along with the singular value decomposition to a grouped mode shapes. By integrating 

all these components, operational mode analysis was efficiently and qualitatively performed.    
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