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ABSTRACT
Bayesian model selection chooses, based on measured data, using Bayes’ theorem, suitable mathematical models
from a set of possible models. In structural analysis, linear models are often used to facilitate design and analysis,
though they do not always accurately reproduce actual structural responses. When the models also require the
inclusion of nonlinearity to improve accuracy, the computation time required for response simulation increases
significantly. To reduce this computational burden, this paper proposes incorporating into the model selection pro-
cess an efficient dynamic response algorithm previously developed by the last two authors for locally nonlinear
systems. Additionally, nested sampling, an intelligent sampling algorithm, is used to reduce the number of sim-
ulations (using whichever response simulation algorithm) needed for accurate posterior distribution computation.
A numerical example of a 20-story three-dimensional building with roof-mounted tuned mass dampers (TMDs),
using different linear and nonlinear damping models as the candidates to reproduce the TMD damping, demon-
strates that the proposed approach is up to 1000 times faster than traditional Bayesian model selection employing
a conventional structural response solver.
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1. INTRODUCTION

Often in the dynamic characterization of structural systems, different models are available to reflect the behavior of
certain components of the structure. In structural control, design of the controller is only as good as the modeling
of the system; likewise, in structural health monitoring, the accurate modeling of the structure is vital since dam-
age detection is generally performed by identifying changes in the model parameters. The choice of best model(s)
must be made after eliminating models and models that can be shown to be incorrect based on experimental mea-
surements. In Bayesian model selection, the plausibility of each model given the measurement data is determined
using Bayes’ theorem. For structural examples, Bayesian model selection can exploit response measurement data
to identify the best possible model(s) for further calculations [1–5]. Smith and Saitta [6] used a global search
method in a probabilistic framework for model selection. Yuen [7] applied Bayesian model selection to problems
of air quality prediction, hydraulic jump and seismic attenuation relationships. The selection procedure requires
the evaluation of a multi-dimensional integral known as the evidence or the marginal likelihood.

A number of methods have been introduced to reduce the computational requirement of Bayesian model selection.
The posterior harmonic mean estimator of Newton and Raftery [8] samples from posterior distributions of param-
eters to evaluate the integral. Kass and Raftery [9] applied importance sampling to improve the efficiency of simple
Monte Carlo sampling. Two methods to calculate evidence, closely related to simulated annealing and thermody-
namic integration, are annealed importance sampling [10] and the power posterior method [11]. Ching and Chen
[12] introduced the transitional Markov chain Monte Carlo method where samples are taken from intermediate
distributions ultimately converging to a target distribution. The nested sampling of Skilling [13] increases samples
from the high likelihood region. Nevertheless, even with intelligent sampling, the computational cost for evaluating
the evidence using Monte Carlo sampling becomes burdensome, if not computationally prohibitive, for large non-
linear dynamic systems, which require a computationally-intensive simulation multiplied by the necessary number
of realizations for accurate statistical characterization.

Herein, the computational effort of determining probabilistic response metrics of such structures with local non-
linearities is reduced by: (a) exactly reducing the system equations of motion into a set of low-order nonlinear
Volterra integral equations that is solved numerically [14] to evaluate the system responses by exploiting the local-
ized nature of the nonlinearities; and (b) using an intelligent Monte Carlo sampling algorithm — nested sampling



[13] — to direct the computational simulations to those that make the evidence calculation most effective. The pro-
posed approach is illustrated through its application to a numerical example of a 1623 degree-of-freedom (DOF)
model of a three dimensional building with nonlinear tuned mass dampers (TMDs) attached on the roof. Different
nonlinear damping models are used as candidates to model the TMD damping; the computational efficiency of
the proposed approach is compared to MATLAB’s ode45, demonstrating three-orders-of-magnitude reductions in
computation time.

2. METHODOLOGY

The proposed method consists of two parts: the Bayesian model selection with intelligent sampling, and the
efficient response analysis of systems with local nonlinearities as described below.

2.1. Bayesian Model Selection

Let M1, M2,. . . , MNm be the Nm different models for a particular structural problem. The uncertain parameter
vector for each model is θθθ (k); k = 1,2, . . . ,Nm. Given the measurement data set DDD, the posterior probability of
models is evaluated for every model Mk,

P(Mk|DDD) =
p(DDD|Mk)P(Mk)

p(DDD)
; k = 1,2, . . . ,Nm. (2.1)

where the denominator probability density p(DDD) = ∑
Nm
k=1 p(DDD|Mk)P(Mk). The numerator probability P(Mk) is an

a priori measure of plausibility assigned to model Mk, where ∑
Nm
k=1P(Mk) = 1, based on the user’s past experience

and the problem at hand.

However, the main challenge in Bayesian model selection problems lies in evaluating the evidence E (k)= p(DDD|Mk).
For a particular model Mk, this evidence can be written as

E (k) =
∫

ΘΘΘ
(k)

p(DDD|θθθ (k),Mk)p(θθθ (k)|Mk)dθθθ (k)

=
∫

ΘΘΘ
(k)

L (θθθ (k),Mk)p(θθθ (k)|Mk)dθθθ (k)
(2.2)

where L (θθθ (k),Mk) is the likelihood function and p(θθθ (k)|Mk) is the parameters’ prior density function (again
based on prior knowledge or expert judgement).

To efficiently evaluate the evidence, a variety of intelligent sampling algorithms could be used. Herein, the nested
sampling algorithm [13] is utilized. This algorithm treats L as a nonnegative random variable; it’s cumulative
distribution function can be written, omitting superscript (k) and model Mk for clarity, as

PL (λ ) = P [L (θθθ)< λ ] =
∫

L (θθθ)<λ
p(θθθ)dθθθ (2.3)

The evidence, which is the expected value of the likelihood, is estimated using the result that the expected value of
a nonnegative random variable X is equal to the complementary area under its probability distribution curve; i.e.,
E[X ] =

∫
∞

0 [1−PX (x)]dx. This allows the evidence integral Eq. 2.2 (omitting Mk) to be rewritten as∫
ΘΘΘ

L (θθθ)p(θθθ)dθθθ = Eθθθ [L (θθθ)] =
∫

∞

0
[1−PL (λ )]dλ =

∫
∞

0
χ(λ )dλ (2.4)

where the χ(λ ) is a monotonically decreasing function that is the probability mass enclosed in the subset of
parameter space ΘΘΘ where likelihood L (θθθ) exceeds λ ; i.e., χ(λ ) =

∫
L (θθθ)>λ p(θθθ)dθθθ with χ(∞) = 0 and χ(0) = 1.

Defining the inverse function φ(χ(λ )) = λ , the evidence can then be approximated using a quadrature rule as

E =
∫ 1

0
φ(χ)dχ ≈∑

i
φiwi (2.5)

This numerical integration can be performed by taking wi = χi− χi−1. Starting with prior volume χ0 = 1, Ns
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Figure 2.1 The nested sampling algorithm with a two-dimensional parameter space.

samples are drawn from the prior p(θθθ). At each iteration, a new sample is drawn from the prior with Lnew > Li,
where Li is the lowest likelihood value of the current sample pool; i.e., Li = min j L (θθθ j). The prior volume
corresponding to this new sample is χi+1 = τi+1χi, where τ follows the probability density p(τ) = Nsτ(Ns−1) for
the largest of Ns samples drawn from the standard uniform distribution U (0,1). The means of τ and lnτ are,
respectively, E[τ] = Ns/(Ns +1) and E[lnτ] =−1/Ns. Either χi = [Ns/(Ns +1)]i or χi = exp(−i/Ns) can be used
for simplicity with a deterministic approach [15]. The stopping criterion is when either i exceeds nmax or the
change in evidence E is less than 1%.

The standard Monte Carlo (MC) estimate for the evidence is E (k) = 1
Ns

∑
Ns
i=1 L (θθθ i) where {θθθ 1, . . . ,θθθ Ns} are sam-

ples from prior p(θθθ). Since the high likelihood region is generally very different compared to the supports of the
prior, the variance of the standard MC estimator will be high unless a large number of samples are used [12]. On
the other hand, nested sampling samples more from the high likelihood region. Thus, less variance can be expected
for this estimator compared to MC if same number of samples are used.

2.2. Efficient Analysis of Systems with Local Nonlinearities

Let the nonlinear model follows the following state space equation,

Ẋ(t) = AX(t)+Bu(t)+Lg(X(t)), X(0) = x0 (2.6)

where X(t) is the n×1 state vector, A is the n×n state matrix, u is a m×1 external excitation, B is the n×m
influence matrix, g(·) is a ng×1 nonlinear function of an no×1 subset of states X(t) = GX(t), L is a n×ng
influence matrix which maps the nonlinear force vector to all the states, and x0 is the initial condition.

The nominal linear system corresponding to the nonlinear system Eq. 2.6 is

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 (2.7)

The response of nonlinear system Eq. 2.6 is calculated by the superposition of x(t), the solution of linear system
Eq. 2.7, and x(nl)(t) due to the nonlinear forcing function g(X(t)). Hence,

x(t) =exp(At)x0 +
∫ t

0
HB(t− s)u(s)ds,

x(nl)(t) =
∫ t

0
HL(t− s)g(X(s))ds

(2.8)

where HB(t) = eAtB and HL(t) = eAtL are impulse responses of the nominal system; and total response is X(t) =
x(t)+x(nl)(t). The solution of x(nl) can be done efficiently with the following:

p(t) = g(X(t));

X(t) = x(t)+
∫ t

0
HL(t− s)p(s)ds

(2.9)



where x(t) = Gx(t), HL(t) = GHL(t). Equations Eq. 2.9 can be combined to give

p(t)−g
(

x(t)+
∫ t

0
HL(t− s)p(s)ds

)
= 0 (2.10)

The system of equations Eq. 2.10 is a vector nonlinear Volterra type integral equation (NVIE) written in non-
standard form. Hence, the nonlinear system in Eq. 2.6 is exactly reduced to low-order NVIE Eq. 2.10. In the
algorithm proposed in [14], a combination of a Newton-Gregory integration scheme along with fast Fourier trans-
forms (FFTs) is applied to compute the required convolutions in Eq. 2.10, which dramatically reduces the required
computational cost to solve first for the nonlinear force vector time history p(t) and, subsequently, for the desired
system outputs using any standard linear system solution (e.g., time marching, FFTs, etc.).

3. NUMERICAL EXAMPLE: THREE-DIMENSIONAL WIND-EXCITED STRUCTURE

The 20-story moment-resisting frame building model with three nonlinear TMDs, shown in Figure 3.1, adapted
from Wojtkiewicz and Johnson [16], is considered here to evaluate the efficacy of the proposed method. The
building has a height of 80 m, and has a 40 m×30 m rectangular 5-bay×3-bay plan in the first five stories, then
3-bay×2-bay in stories 6–10, and 2-bay×2-bay in the top half of the building. Cross braces carrying axial loads
provide additional stiffness for lateral bending and torsion. Euler-Bernoulli beams are used to model columns and
floor beams; the beam-column joints are assumed rigid. Additional in-plane stiffness of the floors is provided by
additional cross elements on the floor.

Without the TMDs, the structure model with 1,620 DOF has its first six modal frequencies at 0.5718 Hz (first
y-direction mode), 0.5893 Hz (first x-direction mode), 0.9363 Hz (first torsional mode), 1.3632 Hz (second y-
direction mode), 1.5346 Hz (second x-direction mode), and 2.0292 Hz (second torsional mode). Two TMDs are
placed in the y-direction (each about 0.55% of the building mass) and one TMD in the x-direction (about 1.1% of
the building mass) which splits the first y mode into two modes with frequencies at 0.5062 and 0.6282 Hz, the first
x mode into two modes with frequencies at 0.5214 and 0.6475 Hz, and the first torsional mode into two modes
with frequencies at 0.5615 and 0.9506 Hz.

The building is subjected to one-directional wind excitation (oriented toward the east-northeast, at a 30◦ angle from
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Figure 3.1 Complex three-dimensional wind-excited structure.



the x-axis as shown in Figure 3.1), modeled as a narrowband filtered Gaussian white noise process shaped vertically
along the building height. The filter is a 16th order Butterworth band-pass filter with cutoff frequencies 1.2 times
smaller and larger than the fundamental structural natural frequency, resulting in most of the energy in the range
of 0.35–1.5 Hz, exciting primarily the fundamental mode in the east-west (E-W) x-direction and, secondarily, the
fundamental modes in the north-south (N-S) y-direction and in torsion. The vertical power-law shaping of the
wind excitation is proportional to the height to the 0.3 power [17]. The force is assumed for simplicity to be fully
correlated at all heights along the building.

The true model, used to generate response measurements, has in each of the three TMDs a power-law damper that
exerts a force

fd,P = cd,P|u̇|βP sgn(u̇)+ cnom,Pu̇ (3.1)

where βP = 0.8. For the one TMD that moves in the in x direction, the damper coefficients are cx
d,P = 200 kN·(s/m)βP

and cx
nom,P = 30 kN·(s/m); for each of the two TMDs that move in the y direction, the coefficients are cy

d,P =

100 kN·(s/m)β and cy
nom,P = 15 kN·(s/m). This true model is simulated with the wind excitation to produce output

acceleration responses at the top-floor center-of-mass in the x and y directions and the torsional acceleration (which
could be approximated with two non-collocated accelerometers). These measurements are sampled at 20 Hz and
corrupted with 20% additive Gaussian white sensor noise.

3.1. Models for Damping of the TMDs

One linear and two nonlinear models are postulated to represent the nonlinear damping of the TMDs. Their details
are given in Table 3.1. The models are assumed a priori to be equally likely. The priors for the parameters of
different models are given in Table 3.2. The linear viscous damping model assumes that the damping force fd,
exerted by each TMD, is proportional to the relative velocity between the TMD and its roof attachment point. The
power-law viscous damping model has the damping force proportional to the relative velocity raised to power βP
as well as a linear viscous damping term. In the cubic polynomial damping model, a cubic term, similar to the
power law damping with βP = 3, is added to the linear term.

The result of the model selection, given in Table 3.3, clearly shows that the power law damping model emerges
as the most probable, as expected, by achieving a posterior model probability of 0.98, whereas the next two best
models are the linear and cubic polynomial damping. This is also expected as the true power law model (βP = 0.8)
is close to a linear one.

Table 3.1 Nonlinear damping models, where u is a TMD displacement relative to its roof attachment point.

Model (Mk) Damping force Parameters

M1 (Linear) fd,L = cd,Lu̇ cd,L

M2 (Power law) fd,P = cd,P|u̇|βP sgn(u̇)+ cnom,Pu̇
[
cd,P βP cnom,P

]
M3 (Cubic polynomial) fd,C = cd,Cu̇3 + cnom,Cu̇

[
cd,C cnom,C

]
Table 3.2 Prior distributions for model parameters for different damping models for 1623 DOF building structure subjected to
wind load.

Model (Mk) Parameter Distribution Mean Std. dev.

Linear (M1)
cx

d,L Normal 350 kN·s/m 35.0 kN·s/m
cy

d,L Normal 225 kN·s/m 22.5 kN·s/m

Power law (M2)

cx
d,P Normal 225 kN·(s/m)βP 20 kN·(s/m)βP

cy
d,P Normal 120 kN·(s/m)βP 10 kN·(s/m)βP

cx
nom,P Lognormal 27.5 kN·s/m 2.5 kN·s/m

cy
nom,P Lognormal 20.0 kN·s/m 2.0 kN·s/m

βP Lognormal 0.85 0.05

Cubic polynomial (M3)

cx
d,C Lognormal 75 kN·(s/m)3 7.5 kN·(s/m)3

cy
d,C Lognormal 20 kN·(s/m)3 2.0 kN·(s/m)3

cx
nom,C Normal 350 kN·s/m 35.0 kN·s/m

cy
nom,C Normal 225 kN·s/m 22.5 kN·s/m



Table 3.3 Posterior model probabilities P(Mk|DDD) with priors P(Mk) = 1/3.

Model (Mk) lnp(DDD|Mk) P(Mk|DDD)

M1 (Linear) 4920.9835 0.0093

M2 (Power law) 4925.6425 0.9828

M3 (Cubic polynomial) 4920.8230 0.0079

3.2. Computational Gain

The proposed method is implemented with 214 time steps of ∆t = 1.83 ms duration each, which results in accel-
eration responses that differ from that computed via MATLAB’s ode45 (with default tolerances) by O(10−3) on a
relative RMS basis; since ode45’s default relative tolerance is also O(10−3), the two methods are of comparable
accuracy. The simulations are run on a MacBook Pro, with a 2.3 GHz Intel Core i7 processor and 16 GB RAM,
running MATLAB R2014b; cputime is used to calculate the required time of the solvers. The proposed method
takes 562.830 s to execute the necessary one-time calculations and only 2.059 s for the calculations that must be
repeated for each random sample; in contrast, ode45 requires 47.66 min. per realization. The result is that the
proposed method provides a computational gain of 5.06 for one simulation but far greater efficiency for problems
such as this where responses must be evaluated for many random samples of the model parameters. For example,
to evaluate the power-law damping model, ∼550 simulations are required, resulting in a speedup of 927.74.

4. CONCLUSIONS

Bayesian model selection helps in selecting the best models among competing ones based on measured data.
However, the main obstacle still remains: the evaluation of the multi-dimensional integral, known as evidence; its
computational burden increases rapidly, becoming possibly prohibitive, for large systems with nonlinearities. A
fast computational methodology is proposed herein to reduce this computational burden by incorporating a NVIE
approach [14] along with nested sampling. The efficacy of the proposed method for Bayesian model selection in-
volving a large locally nonlinear model is demonstrated through its application to a 1623 DOF numerical structural
example, resulting in a gain of three orders of magnitude in computational efficiency.
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