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ABSTRACT 

The structural integrity of cable-supported bridges relies on the condition of the main tension-resisting members. 

Monitoring and damage detection strategies are particularly challenging to implement in cables, especially in the 

critical anchor zone. The eigenparameter decomposition of modal flexibility damage identification method is 

examined for applications in damage detection near anchor zones in cable structures. The cable structure is 

modeled as a multi-degree of freedom system with acceleration sensors. The flexibility matrices of damaged and 

undamaged conditions are determined by performing a power spectral analysis. The effectiveness of this method 

to determine existence, location and extent of damage is evaluated. The effects of damage severity and critical 

damping ratio are considered. A set of additional formulas to automate the decision-making processes of the 

method is proposed. The effectiveness of the method to determine damage location is validated and compared to 

the results of the damage index method. It is found that the flexibility-based damage identification strategy is 

much more effective to locate damage than the damage index method. Damage loss estimation is also unaffected 

by the level of damping in the cable and it effectively resembles the exact damage loss. 
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1. INTRODUCTION 
 

The condition of transportation infrastructure in the United States is detrimental. Approximately 260 million trips 

are made over structurally deficient bridges [1]. Thus, the inspection, maintenance and repair of bridges is of 

paramount importance for the safety of the population. Significant effort in the development of more effective 

inspection and monitoring systems must be placed in order to catch up with the great number of damaged bridges 

in the country. 

 

The structural integrity of bridges relies on the condition of critical load carrying elements. It follows then that 

the life expectancy of cable-supported bridges depends on the condition of the cables [2]. Damage in cables is 

primarily caused by corrosion and fatigue due to long-term service. It has been found that the exposure of cables 

to high levels of moisture can result in severe corrosion, reducing cable diameters up to 30% [3]. This translates 

into a loss in bending stiffness of up to 76%, and hence a significant reduction in loading capacity and vibration 

resistance. 

 

Inspectors face a great challenge in evaluating the condition of main tension-resisting elements in cable-supported 

bridges. Visual inspections are still the most common method of assessing bridge structural integrity [4]. However, 

much can be missed during a visual inspection. The presence of steel protective pipes also restricts the number of 

nondestructive testing (NDT) methods that can be used to identify damage. Moreover, the most difficult region to 

evaluate is the critical anchorage zone since it is hidden from view and most NDT methods cannot be performed 

in this region [4]. This makes vibration-based methods more advantageous for these purposes.  

 

This study investigates the effectives of a modified flexibility-based damage identification method to detect, locate 

and quantify damage in cable structures near the anchor zone. The theory of the method is explained and the 

effects of damage severity and cable damping are evaluated. Three steps in the method that represent a challenge 

in the automatic execution of the algorithm are also enhanced to reduce user interaction to a necessary minimum. 

The performance is also compared to that of a damage index method that has been used in the past to determine 

damage location. 

 

 



2. THEORETICAL DEVELOPMENT 
 

2.1 Modal flexibility matrix 

 

The modal flexibility matrix can be calculated using [5]: 

  

   𝐹 = [Φ] [
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where [Φ] = [ϕ1, ϕ2, … , ϕ𝑛]  is the mode shape matrix, ϕ𝑗  is the j-th mode shape, 𝜔𝑗  are the natural 

frequencies per mode j in radians per second, and 𝜆𝑗 are the eigenvalues per mode j. After determining the mode 

shapes and natural frequencies of the structure from a power spectrum analysis, the mode shapes are mass-

normalized. The differential flexibility matrix, Δ𝐹  can be determined by subtracting the undamaged modal 

flexibility matrix, 𝐹𝑢 from the damaged modal flexibility matrix, 𝐹𝑑. 

 

2.2 Eigenparameter decomposition of modal flexibility matrix method 

 

The eigenparameter decomposition (ED) of modal flexibility matrix method is a modal flexibility-based damage 

identification method that was developed by Yang and Liu in 2008 [6]. An alternate way of determining the 

differential flexibility matrix proposed by the authors and the method’s three damage identification components 

are shown below. 

 

2.2.1 Approximated differential flexibility matrix 
An approximated way of determining Δ𝐹 using the mode shapes and eigenvalues of the undamaged and damaged 

structure is proposed:  

 

 

            (2.2) 

 

 

where NM is the number of modes. 

  

2.2.2 Damage detection 
The eigenvalue problem for the differential flexibility matrix is solved. The number of damaged elements in the 

system, q is given by the number of non-zero values in the diagonal of the eigenvalue matrix of the differential 

flexibility matrix, 𝛬. 

  

2.2.3 Damage location 
The eigenvalue problem can also be solved for each elemental stiffness matrix of the discretized structure. The 

stiffness connectivity matrix is calculated such that:  

 

    𝐶 = [𝑐1 𝑐2 …    𝑐𝑚 … 𝑐𝑁𝐸]    (2.3) 

 

    𝑐𝑚 = √𝜎𝑚𝑢𝑚     (2.4) 

 

where NE is the total number of elements, cm is the m-th elemental stiffness connectivity vector, and 𝜎𝑚 and 𝑢𝑚 

are the non-zero eigenvalue and eigenvector of the m-th elemental stiffness matrix, respectively.  

 

Finally, the location matrix is generated by: 

 

               𝐿 = 𝑈𝑇𝐹𝑢𝐶      (2.5) 

 

where U is the eigenvector matrix of Δ𝐹. The location of the damaged elements is given by the columns of L with 

zero value entries. 
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2.2.4 Damage quantification 
If the number of damaged elements is q, the columns in L corresponding to the damaged elements can be 

assembled into a matrix S as: 

 

 𝑆 = [𝑙1 𝑙2 … 𝑙𝑞]     (2.6) 

 

It can be shown that there exists a relationship between the eigenvalue matrix of the differential flexibility matrix 

and S defined by: 

   

     𝛬 = 𝑆Δ𝑃𝑆𝑇     (2.7) 

 

The matrix Δ𝑃 is a diagonal matrix whose entries are the elemental stiffness parameters, 𝛼𝑚. Each elemental 

stiffness parameter represents the fraction of elemental stiffness loss due to damage, so that 0 ≤ 𝛼𝑚 ≤1.0. The 

greater the value of the stiffness parameter, the more severe the damage.  

 

The relationship in Equation 2.7 still remains valid when the rows containing zero entries in S, and the rows and 

columns containing zero diagonal entries in Λ are removed to form matrices S* and Λ*, respectively. The damage 

severity can then be determined by simply solving for Δ𝑃: 

 

 Δ𝑃 = (𝑆∗)−1Λ∗(𝑆∗𝑇)−1     (2.8) 

 

2.3 Automation of decision-making components in the ED method  
 

There are three instances during the execution of this method in which the correct identification of zero value 

entries is critical for proper damage quantification. Zeros must be identified: (1) in the location matrix (𝐿) in order 

to locate damage and form matrix 𝑆 according to Equation 2.6, (2) in the 𝑆 matrix in order to form matrix 𝑆∗, 

which should be a square matrix, and (3) in the eigenvalue matrix 𝛬 to form the square matrix 𝛬∗. The formation 

of 𝑆∗ and 𝛬∗ are essential to calculate the estimated elemental stiffness parameters according to Equation 2.8.  

 

When attempting to run the algorithm automatically, the software can only identify a value as zero if it is exactly 

zero. In the great majority of cases, there will not be any exact zero entries in the diagonal of the eigenvalue matrix 

of the differential flexibility matrix or in the location matrix. This requires that a user initially interprets the number 

and location of damaged elements by inspecting the entries in the location and eigenvalue matrices. Once the 

damaged and undamaged elements are identified, quantification can be determined automatically. A set of 

formulas that turn the zero value entries into exact zeros in 𝐿, 𝑆 and 𝛬 is developed for programming purposes.  

 

The columns of the location matrix that form matrix 𝑆 are those that contain zeros. These columns correspond 

to the damaged elements. Therefore, the location matrix must be modified such that: 

 

         𝐿 =
𝑟𝑜𝑢𝑛𝑑(𝐿𝑥)

𝑥
          (2.9a) 

 

where 𝑥1 < 𝑥 < 𝑥2 and 

 

  𝑥1 =
0.5

𝑚𝑖𝑛(𝑚𝑖𝑛|𝐿(:,𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)|)
         (2.9b) 

 

  𝑥2 =
0.5

𝑚𝑎𝑥(𝑚𝑖𝑛|𝐿(:,𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)|)
         (2.9c) 

 

Once matrix 𝑆 is formed, the zero rows are removed to form 𝑆∗. In order to identify the zero rows, the matrix 𝑆 

must be modified such that: 

 

    𝑆 =
𝑟𝑜𝑢𝑛𝑑(𝑆𝑦)

𝑦
              (2.10a) 

 

where 𝑦1 < 𝑦 < 𝑦2 and 

 

   𝑦1 =
0.5

𝑚𝑖𝑛(𝑚𝑖𝑛|𝑆(𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠,:)|)
        (2.10b) 



  𝑦2 =
0.5

𝑚𝑎𝑥(𝑚𝑎𝑥|𝑆(𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠,:)|)
        (2.10c) 

 

Finally, the rows and columns containing zero diagonal entries in 𝛬 must be removed to form 𝛬∗. The eigenvalue 

matrix 𝛬 must be modified as: 

 

   𝛬 =
𝑟𝑜𝑢𝑛𝑑(Λ𝑧)

𝑧
          (2.11a) 

 

where 𝑧1 < 𝑧 < 𝑧2 and 

 

   𝑧1 =
0.5

𝑚𝑖𝑛|𝑑𝑖𝑎𝑔(Λ(𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠))|
        (2.11b) 

 

  𝑧2 =
0.5

𝑚𝑎𝑥|𝑑𝑖𝑎𝑔(Λ(𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠))|
        (2.11c) 

 

It must be noted that in a 2DOF system the lower bounds and upper bounds for 𝑦 and 𝑧 are interchanged, i. e. 

the lower bound for 𝑧 is 𝑧2 while the upper bound is 𝑧1, and the lower bound for 𝑦 is 𝑦2 while the upper 

bound is 𝑦1. 

 

2.4 Damage index method 

 

In the damage index (DI) method, damaged elements can be identified based on the relatively larger values of the 

damage indices [7, 8]. A damage index, 𝛽𝑗 relates the deformation of the j-th element in the i-th mode (Δ𝑖𝑗) with 

the deformation of the corresponding element and mode in the damaged structure (Δ𝑖𝑗
∗ ). For NE number of 

elements, fij is defined by: 

 

    𝑓𝑖𝑗 =
(Δ𝑖𝑗)

2

∑ (Δ𝑖𝑗)
2𝑁𝐸

𝑗=1

          (2.12) 

 

and fij* is the complex conjugate of fij such that: 

 

    𝑓𝑖𝑗
∗ =

(Δ𝑖𝑗
∗ )

2

∑ (Δ𝑖𝑗
∗ )

2
𝑁𝐸
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          (2.13) 

 

The damage index is determined by: 

 

     𝛽𝑗 =

𝑓𝑖𝑗
∗ +1

𝑓𝑖𝑗+1
+1

2
          (2.14) 

 

The damage index calculated by Equation 2.14 can only be represented for one mode at a time. To take multiple 

modes into account, the following relationship must be used: 

 

            𝛽𝑗 =

(∑ 𝑓𝑖𝑗
∗𝑁𝑀

𝑖=1 )+1

(∑ 𝑓𝑖𝑗
𝑁𝑀
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+1

2
          (2.15) 

 

The normalized damage index, Zj for each element j is determined assuming the standard form of the damage 

index: 

 

      𝑍𝑗 =
𝛽𝑗−𝜇𝛽

𝜎𝛽
            (2.16)

    

where 𝜇𝛽 and 𝜎𝛽 are the mean and standard deviation of the damage indices per mode i. To classify an element 

as damaged or undamaged, a threshold λ is established so that if 𝑍𝑗 ≥ 𝜆 the element is damaged and if 𝑍𝑗 < 𝜆 

the element is undamaged.  

 

 

 



3. NUMERICAL VALIDATION 

 

3.1 Description of numerical simulation 

 

A cable structure is modeled as a two-degree-of-freedom (2DOF) system simulating a real cable structure with 

two acceleration sensors uniformly distributed along the cable length, as shown in Figure 3.1. Damage is simulated 

as a loss in bending stiffness on the second element only (shown in red) to emulate damage near the anchorage. 

Stiffness loss is varied in increments of 10%. The structure is modeled in Simulink/MATLAB using state-space 

representation. Band-limited white noise (BLWN) is input into the second DOF and the acceleration responses of 

both DOFs are used to perform a power spectral analysis. The signal duration is 1,000 seconds, the sampling 

frequency is 128 Hz and the number of points used for the Fast Fourier Transform is 16,384. The mode shapes 

and frequencies of the damaged and undamaged structure are determined from the frequency response functions 

of each DOF. These in turn are used to determine the modal flexibility matrices, 𝐹𝑢 and 𝐹𝑑. 

 

 
 

Figure 3.1 Two-degree-of-freedom cable model analyzed 

 

The ED and DI methods for damage identification are then implemented and their performance evaluated. The 

effect of using the exact differential flexibility matrix versus the approximate in the ED method is also examined. 

The effect of damping in each method is investigated by comparing results of the cable with critical damping 

ratios of 3%, 2%, and 1%, and no damping. 

 

It is desired to apply damage identification strategies with as little user interference as possible. Hence, a 3DOF 

model of the cable structure is also analyzed in order develop general equations that contribute to the automation 

of the quantification part of the ED method algorithm for multiple DOF systems, as explained in Section 2.3. 

 

3.2 Eigenparameter decomposition of modal flexibility matrix method 

 

This section illustrates the many variables that have a role in the performance of the ED method. The 2DOF 

system is evaluated for stiffness losses varying from 0-50% in increments of 10%. Damage detection and location 

are correctly established in all cases, independently of damage severity, damping ratio or the method of 

determining the differential flexibility matrix. 

  

The stiffness loss estimated by the ED method using the exact differential flexibility matrix (as explained in 

Section 2.1) compared to the performance using the approximate differential flexibility matrix (Equation 2.2) with 

3% damping is shown in Figure 3.2. It can be observed that the damage extent is consistently overestimated and 

is more conservative as the damage is more severe. When the approximate differential flexibility matrix is used 

to solve the initial eigenvalue problem, the overestimation is slightly larger than when the exact differential 

flexibility matrix is used.  

 

However, it is found that the relation between the exact and estimated stiffness loss is very predictable, so a 

mathematical relation between them can be established. This relation has been found by means of an exponential 

regression with a relative predictive power of 𝑅2 = 0.9781 as: 

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑠𝑠 = 7.57814𝑒0.0538 𝑒𝑥𝑎𝑐𝑡 𝑙𝑜𝑠𝑠    (3.1) 

 



Therefore, the initial estimated stiffness loss can be converted to a final estimation that is very close to the exact 

loss, as shown in Figure 3.3. Equation 3.1 provides a reliable means of reducing the degree of overestimation 

intrinsic in this method. 

 

 
Figure 3.2 Estimated vs. exact cable bending stiffness loss using the approximate or exact differential flexibility 

matrix 

 

 
Figure 3.3 Initial and final estimations of the ED method 

 

The final damage severity estimations for the undamped system and the system with critical damping ratios of 

3%, 2%, and 1% are shown in Table 3.1. The estimation in the undamped structure is slightly smaller than that in 

any of the three damped cable cases. However, it can be seen by comparing the three cases where damping is 

included that the amount of damping has no impact on the estimation in stiffness loss.  

 

Table 3.1 Final stiffness loss estimation of ED method for different damping ratios 

Loss 

(%) 

Final loss estimation by ED method (%) Error (%) 

ξ = 0.03 ξ = 0.02 ξ = 0.01 undamped ξ = 0.03 ξ = 0.02 ξ = 0.01 undamped 

0 - - - - - - - - 

10 8.93 8.90 8.82 8.56 10.7327 11.0364 11.7979 14.4104 

20 25.99 26.00 25.99 25.85 29.9575 29.9878 29.9575 29.2582 

30 36.19 36.19 36.19 36.16 20.6263 20.6380 20.6497 20.5329 

40 43.90 43.90 43.89 43.88 9.7524 9.7581 9.7350 9.6945 

50 51.93 51.95 51.95 51.89 3.8679 3.8919 3.9099 3.7837 
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3.3 Damage index method 

 

The damage indices for the case with 10% stiffness loss and 3% critical damping are shown in Figure 3.4. The 

values of the normalized damage indices considering the first mode, second mode or all modes are all ±0.7071 

for each element. This is also true for all damage severity cases with 2% and 1% critical damping, and no damping. 

The normalized damage indices in the DI method have shown to be ineffective in locating damage in the cable 

structure with 2 DOFs. It is expected, however, that as more DOFs are considered, as in more complex structures, 

normalized damage indices are more trustworthy in revealing damage location since the distribution of a random 

variable reveals the expected value when the population is larger. This application would be impractical for a 

cable structure since it would require a large number of acceleration sensors to be placed. 

 

Damage indices Normalized damage indices 

  

  

  

 

Figure 3.4 Damage indices for a 3% damped system with 10% stiffness loss in element 2 

 

The unnormalized indices can indicate damage more appropriately if the first mode or all modes of vibration are 

considered simultaneously in the analysis. When only the first mode is considered, the damage indices for the 3% 

damping case with 10% stiffness loss are 1.0149 for the first element and 0.9801 for the second element. When 

all modes are considered, these are 1.0125 and 0.9877, respectively. These results are the most consistent with 



damage location, although the percentage difference between elements when all modes are considered is merely 

2.52%. When only the first mode is considered, the percentage difference between elements is 3.55%. When only 

the second mode is considered in the analysis, the damage indices are 0.9994 for the first element and 1.0004 for 

the second element, which is not consistent with the location of damage. The difference in damage indices between 

elements is also very slight, making it impossible to determine an appropriate damage threshold, 𝜆. 

 

 

4. CONCLUSION 
 

The automated ED method has shown to be effective in rapidly determining the existence, location and severity 

of damage near simulated cable anchor zones, with no false indications. Damage location is always correctly 

determined with the ED method, while the DI method does not clearly reveal damage location. Although the initial 

damage severity estimation with the ED method is very conservative, especially when damage is more severe, an 

exponential expression can be used to determine a final estimation that resembles the real damage severity quite 

effectively. The steps proposed for the automation of the algorithm make damage quantification much faster than 

the unaltered method. These findings and developments represent a step towards the implementation of the ED 

method for damage identification in real cable structures.  

 

 

ACKNOWLEDGEMENT 

 

This material is based upon work supported by the U.S. Department of Homeland Security under the UConn HS-

STEM Program in Transportation Security for Cyber-Physical Systems, directed by Dr. Nicholas Lownes. The 

views and conclusions contained in this document are those of the authors and should not be interpreted as 

necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland 

Security.  

 

 

REFERENCES 
 

1. American Society of Civil Engineers – ASCE (2013). Bridges. 2013 Report Card for America’s 

Infrastructure. 

2. Wickramasinghe, W. R., Thambiratnam, D. P., and Chan, T. H. T. (2013). Damage Detection in Cable 

Structures using Vibration Characteristics. 4th International Conference on Structural Engineering and 

Construction Management. Kandy, Sri Lanka. 

3. Sloane, M. J. D., Betti, R., Marconi, G., Hong, A. L., and Khazem, D. (2012). An Experimental Analysis of 

a Nondestructive Corrosion Monitoring System for Main Cables of Suspension Bridges. Journal of Bridge 

Engineering. 18:4, 653-662. 

4. National Cooperative Highway Research Program – NCHRP (2005). Synthesis 353: Inspection and 

Maintenance of Bridge Stay Cable Systems, Transportation Research Board. 

5. Pandey, A. K. and Biswas, M. (1994). Damage Detection in Structures using Changes in Flexibility. Journal 

of Sound and Vibration, 169: 1, 3-17. 

6. Yang, Q. W. and Liu, J. K. (2008). Damage Identification by the Eigenparameter Decomposition of Structural 

Flexibility Change. International Journal for Numerical Methods in Engineering, 78:4, 444-459. 

7. Park, S., Kim, Y., and Stubbs, N. (2002). Nondestructive Damage Detection in Large Structures via Vibration 

Monitoring. Electronic Journal of Structural Engineering, 2, 59-75. 

8. Park, S., Bolton, R., and Stubbs, N. (2006). Blind Test Results for Nondestructive Damage Detection in a 

Steel Frame. Journal of Structural Engineering, 132: 5, 800-809. 


