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ABSTRACT 
This paper employs the equivalent force control (EFC) method to solve the velocity difference equation in a 
real-time substructure test, which uses feedback control loops to replace the mathematical iteration to solve the 
nonlinear dynamic equation. The spectral radius analysis of amplification matrix shows that the EFC combined 
with explicit Newmark-β method has good numerical characteristics. Its stability limit of Ω=2 remains 
unchanged regardless of the system damping, because the velocity is perfectly achieved during simulation. 
Compared with the proposed method, the stability limits of the central difference method using direct velocity 
prediction and the EFC-average acceleration method with linear interpolation decrease with the increase of 
system damping. The unconditionally stable EFC-average acceleration method even becomes to be 
conditionally stable. If an over-damped system with a damping ratio of 1.05 is considered, the stability limit is 
Ω=1.45. Finally, an experiment of single degree of freedom structure installed with magneto-rheological (MR) 
damper was carried out demonstrating that the proposed method is able to tract both displacement and velocity 
commands accurately, thus performing good applicability and accuracy for velocity-sensitive structures. 
 
KEYWORDS: Real-time substructure test; EFC; Velocity control; Explicit Newmark-β method; Stability  
 
 
1. GENERAL INSTRUCTIONS 
 
In real-time substructural tests, hydraulic servo loading systems are usually displacement-controlled. As the 
displacement of the specimen reaches the command displacement, the velocity usually doesn’t reach the target 
velocity and the acceleration control has worse performance. When the experimental substructure is a velocity 
dependent component, the measured reaction force is inaccurate, so the precision of the test is affected. In 
real-time substructural tests, explicit integration methods [1-5] are widely used because of the simple calculation. 
However, the traditional explicit integration methods [1] are implicit to velocity while they are explicit to 
displacement. Wu et al. [6] improved the traditional central difference method using the forward difference to 
obtain the explicit equation of the velocity. Although this method has a decrease in the stability limit compared 
to the traditional central difference method, the accuracy of the velocity is increased, and open-loop control of 
velocity can be achieved. Darby et al. proposed a method using input signal integral to smooth the displacement 
command, so that better speed response can be achieved. This method can merely make the response smoother 
but it can not assure perfect tracking of velocity. In order to perform real-time substructural tests of damper 
specimens, Wu et al. [8] used the linear interpolation of equivalent force command and achieved a better 
accuracy of the velocity control. In order to improve the velocity control accuracy for real-time substructural 
testing, EFC using explicit Newmark-β algorithm is proposed in this paper. Different from the interpolation and 
smoothing methods that have been referred to, velocity tracking control in an integration time interval is ensured 
by using close-loop control method, so that the accuracy of the velocity response is guaranteed. 
 
 
2. EXPLICIT EQUIVALENT FORCE CONTROL METHOD 
 
Consider a structure like Fig. 2.1, in a real-time substructural test there are a numerical substructure and an 
experimental substructure. The mass, damping and the stiffness matrices of the numerical substructure are  



 
 

Figure2.1 Block diagram of the RST with damper specimen 
 
by MN, CN and KN. Subscript N indicates that the vector is relative to the numerical substructure. Subscript E 
indicates that the vector is relative to the experimental substructure. The corresponding inertial force, damping 
force and restoring force have been obtained in simulation. The experimental substructure is a velocity 
dependent opponent, the restoring force of which is represented by fs and is the function of displacement and 
velocity. Thus the equation of motion for an real-time hybrid test can be expressed in a more general and precise 
form as  
 

N N N s( ) + ( , )K+ + =M a R v d f v d p                           (1) 
 
where d, v, a are respectively the vector of displacement, velocity, acceleration, p is the external load vector, and 
R is the damping force.  
The dynamic Eq. (1) is discretized in time domain and the explicit Newmark-β method is used to solve the 
equation, as shown in Eq. (2) - (4): 
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where Δt is the integration time interval. Eq. (3) can be written as  
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Substituting Eq. (4) and Eq. (5) into Eq. (2), the following Equation is obtained. 
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Eq. (6) can be viewed as a hybrid dynamic equilibrium condition. RN(vk+1) on the left side of the 
equation is the damping force of the numerical substructure. CPDvk+1 can be loosely interpreted as the 
pseudodamping force for the entire system, and the third term is the total (i.e. dynamic plus static) 
the resistance developed by the experimental substructure. The term FEQ,k+1on the right side of the 
Eq. (6) can be considered as an equivalent external force exerted to the hybrid system, which can be 
determined by the step k+1 excitation force exerted to the hybrid system and the structural state ak, 
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vk, dk. The solution of Eq. (6) is the response of the hybrid system to the equivalent external force. 
The basic framework of this method is the same with implicit equivalent force control method [8], 
while the difference is that the solution of Eq. (6) is the velocity vk+1, and the solution of the 
equation in the implicit equivalent force control method is displacement dk+1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Block diagram of the explicit EFC method 
 
Based on the analysis above, the principle of explicit equivalent force control method is shown as Fig. 2.2. 
During each integration time interval Δt, the equivalent force command FEQ,k+1(t) is a function of the time, the 
equivalent force error eEQ,k+1 pass through the equivalent force controller, and by multiplying its output with 

 the velocity command vc
k+1(t) is obtained. The displacement command dc

k+1(t) is obtained 
through the integrating unit s-1 from the velocity command, so that the loading system works in the traditional 
displacement-controlled mode during a real-time substructure test.  is defined as 
conversion matrix CF, where C′E is the initial damping coefficient. Constants can be employed in the conversion 
matrix CF, which can be obtained from the initial structural state by calculating the derivative of Eq. (6) with 
respect to dk+1. For nonlinear experimental structures, the test results will be affected if CF is constant. By 
properly designing the equivalent force controller, e.g. designing the controller using sliding mode control 
method [9], the affection of the values of CF can be weakened. fs[vm

k+1(t)] and vm
k+1(t) are respectively the 

reaction force response and velocity response of the experimental substructure under the 
displacement command dc

k+1(t). Fm
EQ,k+1(t) is the feedback of the equivalent force. It is to be noticed 

that fs[vm
k+1(t)] is relative to vm

k+1(t). If the equivalent force response can accurately track the 
equivalent force command, the velocity vc

k+1(t) will be very close to the target velocity vk+1 when the 
integration time interval Δt ends. 
 
Of course it is to be noted that the velocity vk+1 at the end of every integration time interval is 
difficult to measure from the experimental substructure and needs to be calculated from Eq. (6) with 
the measured reaction force RN[vc

k+1] of the numerical substructure and fs[vm
k+1(t)] of the 

experimental substructure in the explicit equivalent force control method. Because the control error 
is unavoidable in feedback control, it causes actuator displacement error in the meantime. And the 
composite filters[10] are applied to obtain velocity response from displacement response and 
acceleration response in this paper, velocity response error is also inevitable. 
 
 
3. NUMERICAL STABILITY OF EXPLICIT EQUIVALENT FORCE CONTROL METHOD 
The numerical stability of explicit equivalent force control method is analyzed using a single degree of freedom 
of structure as an example. Partial damping of the single degree of freedom structure is used as the experimental 
substructure, and the damping force is assumed to be linear. Eq. (6) can be rewritten as 
 

                               (9) 
 

where CPD and CN respectively represent the pseudodamping coefficient and the damping coefficient of the 
numerical substructure, CE is the damping coefficient of the experimental substructure. At the end of the 
integration time interval, assuming that the velocity of the experimental substructure reaches steady state and 
satisfies Eq. (9), the steady velocity vk+1 can be obtained as Eq. (10). Substituting Eq. (10) into Eq. (5), assuming 
the structure is in free vibration, Eq. (11) is obtained. Define Xk+1 and Eq. (13) is obtained. By Eq. (12), Eq. (4), 
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Eq. (3), and the numerical substructure damping CN is 0, the amplification matrix A can be obtained as Eq. (14). 
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where Ω=ωΔt, ω is the circular frequency of the structure, and ξE is the damping ratio of the experimental 
substructure. When the stability condition of numerical integration is satisfied: spectral radius ; the 
stability range of explicit EFC in this paper is . The comparison with the central difference method and 
average acceleration equivalent force control method with linear interpolation is shown below in Fig. 3.1. 
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a) Central difference method with direct velocity prediction b) EFC-average acceleration method 
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c) Explicit EFC 
Figure 3.1 Spectral radius analyzing           Figure4.1 Equivalent force response with step input 
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It can be seen from Fig. 3.1 a) that the stability limit of the real-time substructure central difference method 
decreases comparing to the traditional central difference method due to the velocity assumption. As the explicit 
EFC method directly uses control method to obtain the speed, thus the numerical stability of the integration 
algorithm is maintained, and the stability limit is Ω=2 regardless of the damping ratio, so it has good numerical 
characteristics. The unconditional stability of the average acceleration equivalent force control method [8] is lost 
after the equivalent force command linear interpolation is delivered. As is shown in Fig. 3.1 b), when the 
damping ratio of the experimental substructure is very large, e.g. when ξE=1.05, its stability limit changes to 
Ω=1.45. The stability of the explicit equivalent force control method excels that of the interpolation force 
control method based on average acceleration method at this point. It is worthy to be noted that the accuracy of 
the velocity measurement in the explicit EFC influences the precision of the equivalent control, thus when error 
exists in the velocity measurement it is likely to lead to error in displacement. So this method is suitable for 
testing dampers with damping force as a major component and with smaller stiffness.  
 
5. NUMERICAL SIMULATION ANALYSIS 
 
Numerical simulation is carried out for the single degree of freedom structure. The parameters of the structure 
are: MN=720kg, KN=74404N/m, KE=0N/m, ξN=0.05, ME=0, ξE=0.05. The natural frequency of the structure is 
1.6179Hz. The transfer function model of the actuator-specimen system is 2 2 2 -1

A A A A A( ) ( 2 )T s s sω ξ ω ω= + + , 
where the parameters ξA=0.8, ωA=316.14rad/s. The parameters of the outer controller of the equivalent force 
controller are kP=0.41, kI=140.  
 
The equivalent force response and displacement response of unit step input are shown in Fig. 4.1 and Fig. 4.2. 
The unit step response of the equivalent force and the velocity track the command satisfactorily, and the 
displacement response is ramp response, which is also consistent with the theoretical results. 
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a)Displacement response                               b) Velocity response 

Figure 4.2 Step response of displacement and velocity  
 
The structural parameters and the actuator model are the same parameters as Fig. 4.2. The parameters of the PI 
controller are: kP=1, kI=60. Polynomial prediction compensation algorithm[11] is applied, which uses polynomial 
interpolation to obtain the new equivalent force command 
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where P is the forward prediction step, a is the coefficient matrix obtained by least square fitting from the 
equivalent force command of former n steps. 

1
EQ,k 10

EQ,k1 1
EQ

EQ,k 2

1 0 0
1 ( )

1 ( 1) ( ( 1) )

N

N
nN

Fa
Fa t t

Fa n t n t

−
+

−

− +

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−Δ −Δ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − Δ − − Δ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

a X F

L
L

MM M M M M
L

                    (16) 

 
The parameters in Eq. (15) and Eq. (16) were chosen as: N=4, n=5, P=1.2, 0.01tΔ = . El-Centro earthquake 
acceleration was input. The peak value of the acceleration was 12.5gal. The equivalent force, displacement and 
velocity responses are shown in Fig. 4.3, Fig. 4.4 and Fig. 4.5. It can be seen from Fig. 4.3 that the equivalent 



force response tracks the equivalent force command accurately. It is proved that the equivalent force controller 
has good performance. It can also be seen from Fig. 4.4 and Fig. 4.5 that the displacement response and the 
velocity response of the damper specimen agree respectively with the displacement command dk+1 and the 
velocity command vk+1. It is demonstrated that this method can guarantee the implementation of the 
displacement commands and speed commands from the numerical simulation. 
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a) Equivalent force response                 b) Enlarged view of Equivalent force response 

Figure5.3 Equivalent force response with damper specimen 
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a) Displacement response                       b) Enlarged view of displacement response 

Figure5.4 Displacement response of damper specimen 
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a) Velocity response                           b) Enlarged view of velocity response 

Figure4.5 Seismic response of damper specimen 
 

 
5. EXPERIMENTAL VERIFICATION 
The validation test of single degree of freedom structure with MR damper is carried out at ACTlab of 
Engineering faculty in University of Bristol. The pictures of test rig are shown as Fig. 5.1. 
 



 
 
a) Experimental rig set-up of substructured model              b)Enlarged view of the specimen 

Figure5.1 Experimental rig set-up of substructured model 
 

The amplifier of the force sensor is the Modular 600 Multi-Channel Signal Conditioning System provided by 
RDP Corporation. And the force sensor is RLU01000 tension and compression sensor provided by RDP 
Corporation, its full scale is ±10kN. The maximum force of MR damper is ±1kN. So the force sensor 
configuration is reasonable. The parameters of the single degree of freedom structure are: MN=720kg, 
KN=74400N/m, ξN=0.05, ME=0. The natural frequency was 1.1679Hz. The time step interval was 0.01s. The 

force-displacement conversion matrix was chosen 1 1N
F N E=( + + ) sC C C

t
− −′

Δ
2M , in which the damping of the 

numerical substructure and experimental substructure were the same CN+C′E=0.2MNω. Proportional feedforward 
controller was used as the actuator controller, with the parameters kP=22 and kff=1.08. And the PI controller was 
used as the equivalent force controller, with the parameters kP=1, kI=20. RD-1105-3 from the Lord Corporation 
is chosen as the MR damper. 0V voltage was input to MR damper. The parameters of adaptive prediction 
compensation are: P=4.4, ka=1.03, α=100, β=5, g=10-5, γ=2. 
 
The seismic responses of explicit equivalent force control method are shown as Fig.5.2, and Fig.5.3. The 
maximum acceleration is 12.5 gal. The parameters of equivalent force controller are: kP=1, kI=10. The 
parameters of adaptive prediction compensation are: P=3.5, ka=1.17, α=100, β=5, g=0.5×10-5, γ=2. 
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a)Equivalent force response                         b)Enlarged view of equivalent force response 

Figure5.2 Equivalent force response 
 

It can be seen from Figure 5.2 that the equivalent response track the command very well in spite of the noise and 
fluctuate. This is caused by the noise in velocity response. According to Figure 5.3, the velocity response 
dovetailed with the command very well, the test results prove its feasibility.  
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a)Velocity response                                 b)Enlarged view of velocity response 

Figure5.3Velocity response with earthquake input 
 
6. CONCLUSION 
 
This paper proposed the explicit equivalent force control method to achieve control targeting at velocity. PI 
control is used to design the equivalent force controller of this method. Numerical simulation of the real-time 
substructured testing of the specimen with MR damper is carried out. 1) The spectral radius analysis indicates 
that the stability limit of this method is greater than that of central difference method using linear interpolation; 
2) For cases of substructures with damping coefficients greater than 1, the stability limit of the explicit 
equivalent force control method is greater than that of implicit equivalent force control method using linear 
interpolation. 3) The results of the experiment demonstrated that the proposed method can control both the 
displacement and velocity of the damper accurately. 
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