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In this paper, both the methods of continuous sliding mode control (CSMC) and
continuous sliding mode control with a compensator (CSMC&C) are applied to a
benchmark problem; namely, an active mass driver system.  For these control
strategies, salient features of the controller design and their merit are described.
Simulation results based on CSMC and CSMC&C are presented and compared with
that of the LQG method.  It is demonstrated that the control performances of  CSMC
and CSMC&C are quite comparable to that of LQG.

Introduction
The theory of sliding mode control (SMC) or variable structure system (VSS)

was developed for robust control of uncertain nonlinear systems.  Applications of
continuous sliding mode control (CSMC) that does not have chattering  effect to the
following seismic-excited structures have been studied: (i) linear and nonlinear or
hysteretic buildings [Yang et al 1994a, 1995a], (ii) sliding isolated buildings [Yang et
al 1996a], and (iii) parametric control, such as the use of active variable dampers
(AVD) on bridges [Yang et al 1995b] and active variable stiffness (AVS) systems
[Yang et al 1996c].   In addition to full state feedback controllers, static output
feedback controllers using only a limited number of sensors installed at strategic
locations were also presented in the studies above.  Shaking table experimental
verifications of the CSMC methods for linear and sliding-isolated building models
have been conducted [Yang et al 1996a, b].  Based on the  simulations and
experimental results, it was demonstrated that the continuous sliding mode control
methods are robust and their performances are quite remarkable.

Recently, a technique for designing sliding mode controllers by introducing a
fixed-order compensator using the linear quadratic optimal control theory (LQR) has
been presented [Yang et al 1994b].  The main advantages of using a fixed-order
compensator in sliding mode control are as follows: (i) the static output feedback
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controller can be designed systematically, and (ii) the modulation of the response
quantities and control efforts can be made easily in a systematic manner for both the
full-state and static output feedback controllers.

In this paper, both the methods of CSMC and CSMC&C are applied to a
benchmark problem [Spencer et al 1997] for the evaluation of their performances.
For the CSMC method, an observer  described in Spencer et al (1997) is needed to
estimate the state variables of the design model.  For the CSMC&C method, on the
other hand, an observer is not needed; however, a first order filter is implemented to
each measurement (feedback) to facilitate the static output controller design.
Simulation results based on CSMC and CSMC&C are presented and their
performances are compared with that of the LQG method.

Formulation
The evaluation model representing the structure of benchmark problem is given

in Spencer et al (1997).  For controller design, the design˝model is expressed as
� ��x A x B u E xr r r r r g= + + (1)

z C x D u F xr zr r zr zr g= + + �� (2)

y C x D u F xr yr r yr yr g= + + �� (3)

in which xr  is a 10-state vector, zr  is a 12-control output vector, and yr  is a m
measured output vector.

Continuous Sliding Mode Control (CSMC): The CSMC controller is given by
[Yang et al 1994a]

u K x K xb r f g= +  � �� (4)

in which Kb  and K f  are feedback and feedforward gain matrices, respectively,

K P B P A B P Pb r r r= − − ′ ′−      ( ) 1 δ  ;      K P B P Ef r r= − −   ( ) 1 (5)

In Eqs.(5), δ >0 is the gain margin and P is the (1x10) sliding surface coefficient
matrix that can be determined by minimizing the objective function J,

J x C Q C xr zr zr r= ′ ′∫
∞
      dt

0
(6)

where Q is a (12x12) weighting matrix [Yang et al 1994a].
The estimated state vector �xr  for the design model is obtained from the Kalman-

Bucy filter as follows [Spencer et al 1997]
�

�

� ( � )x A x B u L y C x D ur r r r r yr r yr= + + − − (7)

in which L is the observer gain.

Continuous Sliding Mode Control With Compensator (CSMC&C): For CSMC&C,
a first order filter is introduced to the output feedback vector yr

�η ηη η= +A B yr (8)

where η  is a m-vector representing the new output feedback vector. Hence,
combining with Eqs.(1) and (8), the augmented design model becomes a system of
(10+m) state equations with ~ [x xr r= ′ ′ ′,  ]η  as the (10+m) augmented state vector.



The control output zr  and the new output feedback η  for the augmented system
become

z C x D u F xr zr r zr zr g= + +
~ ~

��    ;       η =
~ ~C xyr r (9)

where 
~

[ ,C Czr zr=   0]  and 
~

[ ,C Iyr m= 0   ]  with I m being a (mxm) identity matrix.

A compensator with a 2-dimensional state vector q q= ′[ ]1 ,  q2  is introduced as
�q L q L q N1 11 1 12 2 1= + +   η (10)
�q L q L q N D u2 21 1 22 2 2 2= + + +    η (11)

and the sliding surface is expressed in terms of the compensator˝variables
S P q P q= +1 1 2 2  (12)

In Eqs.(10)-(12), P1, P2 , L11, L21, L12, L22 , N1, N2 and D2  are determined by
minimizing the following objective function [Yang et al 1994b]

�

� �

�

J z Q z Q q Q q u R u q R qr z r q eq u eq q= ′ + ′ + ′ + ′ + ′∫






∞
Ε             dtη ηη 1 1 1 1

0
1 1

(13)

in which z C x D ur zr r zr eq= +   and ueq is the equivalent control force given by

ueq = G η  + H q 1, G P D= − −  ( )2 2
1  ( )P N P N1 1 2 2  + , H P D= − −  ( )2 2

1 [ (P L1 11−

L P P12 2
1

1 − ) + P L L P P2 21 22 2
1

1( )]− − .  The minimization procedures result in the LQR
static output feedback in which iterative procedures are needed to solve nonlinear
equations.  The resulting CSMC&C controller is given by [Yang et al 1994b]

u u M P D P q M P D P q D Eeq c c= − + − + −− − −[ ( ) ] [ ( ) ]1 2 2
1

1 1 1 2 2
1

2 2 2
1

12       δ δ (14)

in whichMc1 = ( )P D2 2
1 − (P L P P1 12 2

1
1   − + −P L P P2 22 2

1
1  ) , Mc2 = ( )P D2 2

1 − (P L1 12 +
P2 L22) and δ > 0 is the gain margin.

Simulation Results
Numerical simulations were conducted using the MATLAB SIMULINK

program for the evaluation model.  Only the simulation results for the El Centro
earthquake excitation are presented.  For each control strategy, three different design
cases are considered; namely, 5-sensor, 3-sensor and 1-sensor.  The output feedback
quantities for the three cases are as follows: (i) for 5-sensor case, yr =[ xm, ��xa1 , ��xa2 ,
��xa3, ��xam ′] , (ii) for 3-sensor case, yr =[ ��xa1 , ��xa2 , Ý Ý x a3 ′] , and (iii) for 1-sensor case,
yr =��xa3.  Further, for the fairness of comparison, the feedforward compensation of
the CSMC and CSMC&C was ignored.  The design model, Eqs.(1)-(3), constructed
by Spencer et al (1997) was used for the LQG controllers.  The design model
constructed by the ‘balreal’ and ‘modred’ function in MATLAB CONTROL
SYSTEM TOOLBOX was used for the CSMC and CSMC&C controllers.

For CSMC controllers, control parameters are as follows; (i) 5-sensor case:
Q=diag[1600, 1100, 1100, 0, 0, 0, 0, 70, 10, 15, 15, 1], δ =40, (ii) 3-sensor case:
Q=diag[1100, 1100, 1100, 0, 0, 0, 0, 110, 10, 15, 15, 0],δ =40, and (iii) 1-sensor
case: Q = diag[1500, 1100, 1100, 0, 10, 0, 0, 70, 10, 15, 15, 20], δ =40.  For the
observer, we consider γ = 25 as used in Spencer et al (1997).



For CSMC&C controllers, the control design parameters are as follows; (i) 5-
sensor case: Qz = diag[5500, 5500, 5500, 0, 0, 0, 0, 100, 10, 10, 10, 1500], Qq1

=1,

Qη = 0, Ru= 0.1, Rq�1
= 0.1, L12= -1, L22 = -0.001, P1= 1, P2 = 1000, D2 = 1 and

δ = 107 ; (ii) 3-sensor case: Qz = diag[8000, 8 x104 , 8000, 0, 0, 0, 0, 200, 10, 10, 10,
2700] and all other parameters are identical to case (i), and (iii) 1-sensor case :
choose G = -1.38 and all other parameters are identical to case (i).  For all the
CSMC&C controllers above, the filter dynamics is constructed based on
A Imη = −10  and B Imη = , where I m is an (mxm) identity matrix.

We also conducted the LQG designs tuning to the control output zr  for
comparisons as follows; (i) 5-sensor case: Q = diag[130, 100, 100, 0, 0, 0, 0, 0, 1, 1,
10, 68], R = 0.1, (ii) 3-sensor case: Q = diag[32, 10, 10, 0, 0, 0, 0, 0, 1, 1, 1, 5], R =
10, and (iii) 1-sensor case: Q = diag[50, 43, 43, 0, 0, 0, 0, 0, 1, 1, 10, 76], R = 0.1.

Within 10 seconds of the El Centro earthquake episode, peak response
quantities of the evaluation model are presented in Table 1 for different controllers.

In Table 1, J6  and J7  are max / d xi o3  and max �� / �� x xai a o3  for i = 1, 2, 3,

respectively.  As observed from Table 1, the control performances for three control
methods, i.e., LQG, CSMC and CSMC&C are quite comparable.

Conclusion and Discussion
The methods of continuous sliding mode control (CSMC) and continuous

sliding mode control with a compensator (CSMC&C) have been applied to the
benchmark active mass driver system.  Simulation results indicate that the control
performances of LQG, CSMC and CSMC&C are quite comparable.  Due to the
specific identification scheme used in the benchmark problem such that the state
variables are fictitious and the output measurement yr  involves both the control
signal u(t) and the earthquake excitation ��xg , the design of CSMC and CSMC&C

controllers becomes more involved.  The performances of CSMC and CSMC&C
controllers may have been compromised because of the particular identification
scheme used to construct the evaluation model.
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Table 1: Peak Response Quantities Subject to the El Centro Earthquake.
LQG CSMC CSMC&C

Quantities Story Story Story
1 2 3 1 2 3 1 2 3

Five-Sensor Case,  y x x x x xr m a a a am= ′[ , �� , �� , �� , ��    ]1 2 3

J6 0.29 0.17 0.14 0.30 0.17 0.13 0.32 0.19 0.13
J7 0.27 0.43 0.45 0.28 0.44 0.46 0.47 0.50 0.63

J8 ( xm in cm) 1.20 (4.127) 1.20 (4.148) 1.23 (4.229)
J9 ( �xm  in cm/sec.) 1.24 (162.4) 1.22 (160.2) 1.26 (165.8)

J10 ( ��xm  in g) 1.11 (5.61) 1.17 (5.89) 1.16 (5.83)

max ( )   u t  (Volt) 1.147 1.151 1.223

Three-Sensor Case,  y x x xr a a a= ′[�� , �� , ��1 2 3  ]

J6 0.29 0.17 0.15 0.29 0.16 0.14 0.30 0.18 0.14
J7 0.26 0.41 0.45 0.27 0.42 0.45 0.42 0.47 0.59

J8 ( xm in cm) 1.28 (4.397) 1.27 (4.368) 1.16 (4.000)
J9 ( �xm  in cm/sec.) 1.28 (168.15) 1.29 (168.83) 1.22 (159.43)

J10 ( ��xm  in g) 1.16 (5.85) 1.15 (5.83) 1.19 (5.99)

max ( )   u t  (Volt) 1.214 1.213 1.144

One-Sensor Case,  y xr a=  [�� ]3

J6 0.30 0.18 0.13 0.30 0.17 0.13 0.32 0.21 0.12
J7 0.28 0.44 0.50 0.28 0.42 0.49 0.41 0.48 0.67

J8 ( xm in cm) 1.16 (4.000) 1.18 (4.047) 0.90 (3.105)
J9 ( �xm  in cm/sec.) 1.18 (154.21) 1.20 (157.65) 1.03 (135.57)

J10 ( ��xm  in g) 1.18 (5.95) 1.18 (5.94) 1.18 (5.94)

max ( )   u t  (Volt) 1.106 1.121 0.911


