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SUMMARY

For dynamical systems expressed in state space form or for systems with nonclas-
sical damping, the reduction of the structural model into the modal coordinates
involves complex modal analysis with complex modal coordinates. Sliding mode
control (SMC) is formulated herein in terms of such complex modal coordinates and
the resulting control scheme is applied to the Benchmark problem'® consisting of
the building-AMD system. Model reduction is achieved on the basis of the spectral
analysis as well as wavelet analysis of the response of the system. Suitable provision
is then provided to eliminate the effects of the neglected higher modes on the control
performance. It is seen that the performances of MS-SMC are comparable to those

of LQG.

Keywords : sliding mode control, benchmark problem, wavelet analysis,
complex—eigenvalue analysis, complex modal analysis

INTRODUCTION

The active structural control has emerged as a potential technology for enhancing
structural functionality and structural safety of civil engineering structures against
natural loadings such as earthquake loadings and wind loadings. Over the past few
decades, various control algorithms and control devices have been developed, mod-
ified and investigated by various groups of researchers working in different parts of
the world. A need was thus felt to establish a benchmark problem so that researchers
working around the globe could test the algorithms developed by themselves applied
to a well defined problem and could compare with the other methods/algorithms
developed by various researchers also working in the field of active structural control.
As a result, an experimentally evaluated mathematical model (evaluation model) of
a scaled building was set as the benchmark problem which is described in details in
Spencer et al. (1997).1

Out of various control schemes studied by various researchers, sliding mode control
(SMC) has also shown its potential of becoming a serious candidate as the control
algorithm applied to the civil engineering structures.?® The robustness against pa-
rameter variations as well as excitation uncertainties that is imparted to the SMC
due to its nonlinear control action, * 2 could make SMC an attractive control algo-
rithm when dealing with civil engineering structures where the external excitation
constitutes the main uncertainty in the system.

Since only few lower modes of the most of the civil engineering structures are gener-
ally excited during wind or earthquake loadings, it is desirable to control only those
critical or the dominant modes. Though the application of modal space reduction
techniques and the control of the critical modes of vibration of civil engineering
structures have been discussed in many published works,'**5 SMC, in the past, has

mainly been designed based on the equations of motion available in the physical
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coordinates. In such cases, SMC can be designed based on both the sliding surface
and nonlinear control action being defined in terms of the physical states of the
system,?" or in terms of the modal coordinates which are obtained from the modal
analysis of the equations of motion assuming that the system damping is negligible.
In such cases the modal coordinates are real and the design of SMC doesnot require
special considerations. However, when the available structural model is in the state
space consisting of state vectors, such as the evaluation model of the benchmark
problem, or if the structure possesses nonclassical damping, the reduction of the
state equations into the modal coordinates involves complex eigenvalue analysis in-
volving complex modal vectors and complex modal coordinates. The design of SMC
in such case is not straight forward.

In the present paper, we first identify the dominant vibration modes of the building-
AMD system presented in the benchmark problem. The power spectrum based on
the Fourier transform and the wavelet analysis'®!? of the input and output of the
structural response are used to identify the dominant modes of the structural vi-
bration. A methodology is then presented to design SMC in terms of the complex
modal coordinates. The control scheme described herein is termed as “modal space
sliding mode control (MS-SMC)” to distinguish it from the conventional sliding
mode control. The MS-SMC is designed based on the reduced order model in the
modal space comprising of the previously identified dominant modes of vibration
only. Suitable robustness against spillover caused by the neglected higher modes is
provided in the control scheme. Simulation results based on the MS-SMC compris-
ing of only first mode are finally presented and compared with LQG based example
control presented in Spencer et al. (1997)! which used a 10-dimensional reduced
order model.

PROBLEM SETTING

The benchmark problem as defined in Spencer et al. (1997),! is based on an actively
controlled, three—story, single-bay, scaled building model. A single active mass driver
(AMD) located at the top floor of the building model is used for control. The struc-
ture is mounted on a shaking table through which earthquake motions are applied to
the structure. The first three modes of the structural system are 5.81 Hz, 17.68 Hz
and 28.53 Hz, with associated damping ratios given, respectively, by 0.33%, 0.23%
and 0.30%.

The evaluation model of the building~AMD system of the benchmark problem? is
represented by '

x = Ax + Bu + EZ,, (1a)
y =Cyx+Dyu+Fy i, + v, (1b)



z=C,x+D,u+F,i, (1c)

where x is the 28-dimensional state vector, Z, is the scalar ground acceleration, u is
the scalar control input in voltage, ¥ = [T, a1, Za2, £a3, Lam]T is the measurable re-
spouse, z = [Z1, T2, L3, Tm, L1, L2, £3, Tm, La1, Laz, Ta3, Lam)T is the vector of response
that can be regulated. Here z; represent the displacement of the ith floor relative to
the ground, z,, is the displacement of the AMD relative to the third floor, Z,; is the
absolute acceleration of the i¢th floor, Z,,, is the absolute acceleration of the AMD
mass, and v is the vector of measurement noises.

The control objective is to design a feedback controller that minimizes ten per-
formance indices given in Spencer et al. (1997).! Five of the performance indices
correspond to minimizing rms values of the response and other five indices corre-
spond to minimizing the maximum displacement, accelerations and control voltage.
Apart from these performance indices, the controller must also satisfy the control
implementation constraints.

MODELING OF THE SYSTEM FOR CONTROL

Characteristics of the System Responses

For studying the dynamic characteristics of the evaluation model given in the bench-
mark problem,! two given scaled earthquake motions of El Centro and Hachinohe
earthquakes are used. The characteristics of the earthquake inputs as well as the
dynamic characteristics of the response of the evaluation model are represented in
Figs. 1, 2, 3 and 4. Figs. 1 and 2 show the power spectrum, time series and wavelet
coefficients of the earthquake input, whereas Figs. 3 and 4 represent those of the top
story acceleration subjected to the earthquake motions. It is seen in Figs. 1 and 2
that the energy contents of the earthquake motion in a frequency range of 2.083 Hz to
8.334 Hz covering the first natural frequency of the structure (5.81 Hz), is compara-
ble to the energy contents of the earthquake motion in a frequency range of 8.334 Hz
to 33.335 Hz covering both of the second and third modal frequencies of the struc-
ture (17.68 Hz and 28.53 Hz respectively). However, it is evident from Fig. 3 and 4
that eventhough the earthquake energy imparted to the structure in all of its three
structural modes are comparable, only the response of the first mode is significant
and the contribution of the second and third modes is practically negligible.

Therefore, it can be concluded here that the structure can be modelled as a SDOF
system in modal coordinates to represent the dynamic responses of the evaluation
model. However, the uncertainties caused by the neglected higher modes and the
potential of spillover problems caused by the neglected modes must be taken care
of in the design of the controller.
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Fig. 1: Power spectrum, time series and wavelet coefficients of El Centro earthquake input.
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Power spectrum, time series and wavelet coefficients of Hachinohe earthquake input.



Acceleration (cm/s?)

o

8
€
2
=
o
@
[=%
[&]
o
[
z

8 o

3

0 5 10 15 20 25 30 35 40
Frequency (Hz)

5 — ——— —— ——r—
E 1
ok I
P (i
F i
- 1
-5 E . ..o ! AP S IR
0 2 4 6 8 10
Time (sec)
2.5 Frequency band = 2.083 to 8.334 Hz
S e
0 2 4 6 8 10
Time (sec)
-1
25 x10'

T T T T T T T T T T T

Frequency band = 8.334 to 33.335 sz

 TSL IS ETETU NI

4 6 8 10
Time (sec)

Fig. 3: Power spectrum, time series and wavelet coeflicients of the top story acceleration

subjected to El Centro earthquake.
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Complexr Modal Analysis

Neglecting the forcing terms of Eq. (1), we obtain the following equations for the
modal analysis of the evaluation model

x = Ax, (2a)
z = C,x. (2b)

The eigenvalue analysis of Eq. (2a) results in complex eigenvalues and complex
eigenvectors related to the state vectors represented by x.

It should be noted that because of the particular identification technique used in
developing the evaluation model, the physical modes could be identified by using
Eq. (2b) to obtain the physically meaningful modes ¢,; from ¢, as

¢zk = Czd)zk' (3)

The three structural modes were clearly identified by using Eq. (3) with ¢, being
the modal vectors obtained from the eigenvalue analysis of Eq. (2a). It should be
noted that the structural modal vectors appear as complex conjugate pairs and
that the corresponding modal coordinates appeared in the following modal analysis
become complex conjugate pairs.

Following the usual method of modal analysis, the total response of the structure in
the state space notations x can be represented as

X = ‘I’xpa (4)
where

v, =[®, @], (5a)

p=[qd" q"]". (5b)

p in the above equations indicate the modal coordinates which also appear as com-
plex conjugate pairs. For the ease in the mathematical treatment, the complex modal
vectors and the complex modal coordinates in Eq. (5) are arranged such that com-
plex and their conjugate parts appear separately.

Substituting Eq. (4) into the state equation Eq. (1a), multiplying the modal matrix
W, to it and then making use of the following biorthonormal properties of the modal
matrix!®

¥, =1 and PTAT, = A, (6)



the equation of motion expressed in the state space become uncoupled and the modal
equation of motions can be written as

q = Aq+ ¥TBu + 9TEg,. (7)

In the above equations, A is a diagonal matrix consisting of the complex eigenvalue
A of the matrix A, and I is an identity matix.

Equation (7) represents the modal equations in complex modal coordinates and all
of the terms appearing in Eq. (7) are complex quantities. It would be convinient
to separate the modal equations into real and imaginary parts which would allow
us to deal with real quantities and will thus simplify the formulation for control
implementation. For this purpose, let the complex modal coordinate related to the
k-th mode gy, the corresponding complex modal vector ¢,, as well as the complex
eigenvalue )\, be represented as

qr = & + 1N, ¢:ck = Qg + i¢1k) Ak = o + 0k, (8)

where subscript R stands for the real part while subscript I stands for the imaginary
part of the complex quantities involved.

Substituting Eq. (5) into Eq. (7), utilizing Eq. (8), and then separating the real and
imaginary parts, the following equations of motion for the k—th mode, are obtained

in the real modal coordinates. 1318
9y, = Ay, + Bru + By, (9)
where,
Iy = | Uk]T, (10a)
a R
A= | T (10b)
_5k o
T
B
B, = P , (10c)
_¢ﬁB_
T
E
E, = Pull | (10d)
| 41E |




Reduced Order Model for Control

Considering only ¢ modes for control, the structural model for control can be written
as

9. = A9, + Bou + E,. . (11)

The sensor output can be written as

yr = Cp0. + Cirdy + Dyu + Fydy + v, (12)

where y, is obtained from y = [, Za1, La2, £a3, Zam]”,depending on which output
is used for feedback control and the corresponding C;, = 2C [®,. — @,C],C;: =
2C,, [®ry —®.x), Cyr, Dy, and Fy, are reduced order coefficient matrices obtained
from the evaluation model defined in Eq. (1). Subscript N denotes the neglected
modes. The matrices A., B, E. as well as the modal state-vector 9, of Eq. (11),
can be easily obtained from Eq. (10) for the respective controlled modes.

When only ¢ modes are considered, the structural response can be approximated by

x=(@, &) %\ 0@, —a,0 % (13)

a4 Ne

Once x is estimated, the physically meaningful response z is obtained by using
Eq. (1c).

In the present paper, Eq. (11), alongwith the output relation given by Eq. (12), will
be used to design the controller whereas the controller would be required to satisfy
that the spillover problem and any potential instability caused by the neglected
dynamics and observation errors due to the neglected dynamics given in Eq. (9b),
are eliminated. The conceptual spillover mechanism is shown in Fig. 5 (also see,
Juang et al. (1980)!* and Balas (1980)'%).

The benchmark problem states that the modal state vector 19, is also to be estimated
through the available observation vector y,. To this end, the Kalman filter optimal
estimator similar to the one given in Spencer et al. (1997),! is used in the present
study to evaluate the best estimate of the modal state vector. Let the best estimate
of the modal state vector be represented by {90, then the Kalman filter optimal
estimator is represented as '

1;90 =A9,+Bu+ L(y, — C;rf?c — Dy, u). (14)
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The Kalman filter gain L was determined by using the MATLAB routine lgew.m
within the control toolbox. Similar to Spencer et al. (1997), here also the mea-
surement noise is assumed to be identically distributed, statistically independent
Gaussian noise processes, and S z,/ Sy, = 7 = 25.

MODAL SPACE SLIDING MODE CONTROL (MS-SMC)

The nonlinear control force in the SMC framework for the present problem expressed
in the modal coordinates, can be represented as,'!?

~ ~

u(d, t) = ueq('gca t) — psgn(a('{%))a (15)

where ueq is the linear part of the control force, known as the equivalent control
force, p is a parameter which imparts discontinuity to the control action across the
so called slkiding surface o(9,) and sgn is the usual signum function, defined as
sgn(o(9,)) = o0(9,)/|o(F.)|. If an observer has been properly designed so that it
converges despite modeling uncertainties, then o(9,) — o(19,). The magnitude of
p, and thus the nonlinear control action, depends on the expected uncertainty in
the external excitation or parameter variation. 82 It should be noted here that the
control force as well as the sliding surface in the present case of MS-SMC depends on
the modal quantities directly and hence provides a better means of modal control. In
this case, it is no longer necessary to define the sliding surface based on the physical
coordinates. The MS-SMC thus gives the flexibility of selecting only the particular
modes that are to be controlled. However, the modal state vectors 9 are in fact

related to the physical coordinates through Eq. (13) and Eq. (1¢).



The equivalent control force ueq of Eq. (15) is obtained by following the Utkin-Dra-
zenovic “method of equivalent control”, ?° which states that in the sliding mode

the system satisfies o(¥;) = 0 and 6(9.) = 0, and the control force is the so called
equivalent control force. For o(¥9,) = St9_c, chosen to be a linear function of the

states of the system, satisfying ¢(d.) = SU, = 0, yields

~

Ueq(De,t) = —=(SB.) ™" [SAD, + SL(C;9y + Fyiy)] (16)

where |(SB.)™!| # 0, and the sliding surface coefficient matrix S is a design matrix,
usually constant, of size r x 2n. Herein, r is the number of control inputs, which in
the present case is equal to 1. The method of designing an optimal sliding surface
coefficient matrix S is discussed in Utkin and Young.?*

Clearly, the control law of Eq. (16) cannot be synthesized explicitly if the external
excitation term Z, is not known a priori, which is generally the case with the loading
encountered with in the vibration problems related to civil engineering structures.
However, under appropriate conditions, the control given in Eq. (16) can be synthe-
sized implicitly via discontinuous (chattering) control defined in terms of the known
system parameters. We, therefore, drop the term containing Z, from Eq. (16) and,
instead, through a properly selected value of p, impart a nonlinear switching dis-
continuous control action to account for the uncertainty in the excitation. If p is
selected such that it accounts for the uncertainties caused by the neglected modes
also, the term related to the neglected modes can also be dropped from Eq. (16).
The choice of p and hence the control force u(@c, t) must be such that the existence
and the attractiveness of the sliding mode is guaranteed. A

In order to ensure the existence of a sliding surface and attractiveness to the surface,
thereby guaranteeing stability of the system on the sliding surface, it is sufficient to
choose a variable structure controller so that the following condition is satisfied”% 1!

o(9.)5(9,) < 0. (17)

For o(9,) = S9., Eq. (17) together with Eq. (14), results in

p > |(SB.)ISL(Fy, &y + C1i9y)|. (18)

Therefore, the realizable control force is finally expressed as

u(@e, 1) = —(SB.) ™! [SAD,] — psgn(a(9.)), (19)

where p is obtained from Eq. (18). Note that ¥, and ¥yof Eq. (16) have been
neglected in Eq. (19).

10



Please note that p as defined in Eq. (18), imparts nonlinear control action depending
on the anticipated magnitude of excitation and the uncertainties caused by the
neglected modes of vibration. Thus the problem of spillover due to the neglected
modes can be reduced with a proper choice of p.

The direct implementation of the control given by Eq. (19), however, results in the
so called chattering which is highly undesirable. Therefore, chattering is eliminated
by smoothing the control force in a thin ‘boundary layer’ of thickness e in the
neighborhood of &(19,).12 The control force without the chattering condition, is thus
obtained as

u(9;,t) = —(SB,) 'SA D, — psat(a(D.)/e), (20)

where sat is a saturation function defined as

~

o (D) /e, if |o(9.)/e| < 1,

sgn(o(Dd.)/e), otherwise. (21)

set(o9/a) - {

It should also be noted here that the control force as given by Eq. (20) results in a
linear control inside the boundary layer for which the stability of the system is readily
satisfied. However, as shown in Corless and Leitmann,?? the control obtained here
does not guarantee the asymptotic stability of the control system but the ultimate
boundedness of trajectories within a neighbourhood of the origin, depending on e,
is guaranteed.

The performance of the control strategy developed herein is compared with the
sample Linear Quadratic Gaussian (LQG) control design presented in Spencer et al.
(1997).! The control design presented therein involves the following reduced order
model.

x, = A;x, + B,u + E, &, (22)
Y, = CyrXp + Dypu + Fopp &y + v, (23)
where x, is a 10-dimensional state vector, y, = [Za Fa2 T3 Zom]T and

A, B, E,,C,,D, and F,, are reduced order coeflicient matrices as given in the
reference. !

SIMULATION RESULTS AND DISCUSSIONS

Numerical simulations for each cases of excitations as given in Spencer et al. (1997)!
were conducted using the MATLAB SIMULINK program. The evaluation model was

11



used to evaluate the control performance whereas the controller was designed based
on the reduced order model. Only two measurement outputs y, = [£43, Lam]T, were
used for the control. The sliding surface coefficient matrix S was obtained by fol-
lowing the method outlined in Utkin and Young (1978),?! Nonami and Tian (1994),

> and Yang et al. (1994).% This involved optimization of a performance index
J=[5° {S’TQ@dt. Q for the present control design was selected to be Q = diag[10, 1].
The magnitude of the nonlinear control action o was obtained from Eq. (18) by us-
ing the root mean square value of the ground acceleration (in volts) for each case
of excitations. p thus obtained was assumed to be constant during the particular
earthquake excitation for which it was obtained. The boundary layer thickness e was
assumed to be 0.1 for all of the simulations.

The performance of the MS—-SMC controller of this study based on the 2-dimensional
model, termed as 2D MS-SMC, is compared with the LQG controller given in
Spencer et al. (1997) which is based on a 10-dimensional reduced order model,
hereafter referred to as 10D-LQG. The performance of both of the controllers for
the case of El Centro excitation are shown in Fig. 6 for comparasion. Also shown in
the same figure is the existance of the sliding mode in the modal space.

From Fig. 6, it can be concluded that the performance of the 2D MS-SMC is com-
parable or even better than that of the 10D-LQG as far as the reduction of the
structural response is concerned. Also, there is no apparant spillover problem due to
the neglected modes of the system. However, the increased controlled performance
of the 2D MS-SMC comes at an expense of the increased controller activity. The
maximum displacement as well as the maximum acceleration of the actuator can
be considerable higher than those in case of the 10D-LQG. However, by making a
proper choice of the sliding surface through various trials and errors, it may be pos-
sible to reduce the maximum response of the actuator. Reduction in the maximum
response of the actuator, on the other hand, will increase the controlled response of
the building thus resulting in the decrease in the control performance in terms of
the reduction of the structural response.

The overall performances of the controller are tabulated in Table below. It is seen
that, though the controller exhibit slightly increased activity, the performance of
the 2D MS-SMC controller is comparable to those of 10D-LQG.

The RMS performance and constraint values were evaluated at the nominal design point
(0, = 37.3 2% and Cg = 0.3) using a simulation duration of 300 seconds.

sec

12
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Fig. 6: The displacement and acceleration of the top floor, AMD (actuator) displacement
and acceleration and control volt as obtained for MS-SMC and 10D-LQG, and the sliding
mode in the modal space for MS-SMC.
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Table. Performance of the 2D MS-SMC as compared to 10D-LQG.!

Performance MS-SMC, designed for:
Index Kanai-Tajimi | EI Centro Hachinohe | 10D-LQG!

J1 0.1735 0.1728 0.1715 0.2840
Js 0.2639 0.2625 0.2602 0.4397
Ja 1.2051 1.2188 1.2497 0.5114
J4 1.0246 1.0328 1.0477 0.5125
Js 1.1901 1.0744 1.0348 0.6267
Jg 0.3366 0.3354 0.3333 .0.4556
J; 0.5968 0.5917 0.5933 0.7102
Jg 3.3377 3.3333 3.3381 0.6680
Jy 3.4071 3.4467 3.5142 0.7753
J10 2.8201 2.8734 3.0159 1.3360
o, (volts) 0.4210 0.4259 0.4372 0.1430
O%,, (&) 2.1303 1.9233 1.8523 1.1218
Oy, (cm) 1.5787 1.5966 1.6371 0.6700
max ju| (volts) 1.7903 1.8187 1.8611 0.5255
max [X,n,| (g) | 10.8234 12.2059 123149 4.8275
max |x,,| (cm) 6.3178 6.4301 6.5921 2.0017

CONCLUDING REMARKS

A modal space sliding mode control (MS-SMC) method is designed here which is
applied to the Benchmark problem.! The power spectrum as well as the wavelet
analysis of the time series of input output showed that the structure vibrated pre-
dominantly in the first natural frequency. Therefore, a single mode reduced order
model of the system was first obtained for the design of the control, while suitable
provision has been provided to eliminate the effects of the neglected higher modes.
The performance of the MS-SMC based on single mode reduced order model is
found to be quite satisfactory, though it involved higher controller activities. It is
worth mentioning here that by making a proper choice of the sliding surface through
various trials and errors, it may be possible to reduce the maximum response of the
actuator. Reduction in the maximum response of the actuator, however, will increase
the controlled response of the building thus resulting in the decrease in the control
performance in terms of the reduction of the structural response.
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