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ABSTRACT

In this paper, we investigate the performance of optimal polynomial control for
the vibration suppression of a benchmark problem; namely, the active tendon system.
The optimal polynomial controller is a summation of polynomials of different orders, i.e.,
linear, cubic, quintic, etc., and the gain matrices for different parts of the controller are
calculated easily by solving matrix Riccati and Lyapunov equations. A Kalman-Bucy
estimator is designed for the on-line estimation of the states of the design model. Hence,
the linear quadratic Gaussian (LQG) controller is a special case of the current polynomial
controller in which the higher order parts are zero. While the percentage of reduction for
displacement response quantities remains constant for the LQG controller, it increases
with respect to the earthquake intensity for the polynomial controller. Consequently, if
the earthquake intensity exceeds the design one, the polynomial controller is capable of
achieving a higher reduction for the displacement response at the expense of control
efforts. Such a property is desirable for the protection of civil engineering structures

because of the inherent stochastic nature of the earthquake.
INTRODUCTION

Under strong earthquakes, the main objective of active control is to limit the peak
response (e.g., displacement) of the structure to minimize the damage. However, it is

difficult to obtain an optimal controller that minimizes the peak response of the structure.
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In this connection, it has been presented by Housner, Soong and Masri' that nonlinear
controllers may be more effective than the classical linear controllers in reducing the peak
response of linear structures. Such evidences were also observed elsewhere ( e.g., Wu et
al® 3, Tomasula et al* > , Agrawal and Yang6'9). Wu et al* 3 and Tomasula et al* ° have
proposed a special polynomial controller for the peak response reduction of seismic-
excited structures. They have shown advantages of the polynomial controller over the
linear optimal controller for control of linear structures. The controller proposed by Wu et
al> ? is a special cubic order controller obtained by minimizing a nonquadratic
performance index and it is similar to the cubic controller derived by Speyer'®. Tomasula
et al* > have proposed a polynomial controller using the tensor expansion method for a
performance index that is quadratic in control and quartic in the states.

Recently, Agrawal and Yang®® have presented a class of optimal polynomial
controllers of various orders by minimizing a special performance index that is quadratic
in control and polynomial of an arbitrary order of the states. This specific polynomial
performance index belongs to a general class for which an exact optimal solution can be
determined analytically. The resulting polynomial controller is a summation of
polynomials of different orders, i.e., linear, cubic, quintic, etc., and the gain matrices for
different parts of the controller are calculated easily from matrix Riccati and Lyapunov
equations. This polynomial controller reduces to the controller presented by Wu et al>?
for a specific choice of weighting matrices. Further, the optimal polynomial controller
has been extended to the case of static output feedback by Agrawal and Yang®® as well as
nonlinear and hysteretic structures’ ',

The objective of this paper is to investigate the performance of the optimal
polynomial controller for a benchmark problem, i.e., the active tendon system. Since the
state variables of the benchmark problem are not physical variables, the static output
polynomial controller® ® is not applicable. Hence, a Kalman-Bucy estimator is used for
the on-line estimation of the states of the design model. Consequently, the linear
quadratic Gaussian (LQG) controller is a special case of the current polynomial controller
in which the higher order parts are zero. Numerical simulations have been conducted by

designing various cases of linear and polynomial (cubic) controllers. By varying the peak



ground acceleration of the earthquake, the percentage of the peak response reduction by
the linear controller (LQG) remains constant. However, the percentage of the peak
displacement reduction by the polynomial controller increases with the increase of the
peak ground acceleration. In particular, when the earthquake intensity exceeds the
specified (design) one, the polynomial controller is capable of achieving a higher
percentage of reduction for the peak displacement response; however at the expense of
using larger control efforts. Such a load-adaptive property is very desirable for control of
civil engineering structures because of the inherent stochastic nature of earthquakes. The
advantage of this load adaptive property for the reduction of peak displacement responses

of seismic excited structures is demonstrated by simulation results.
FORMULATION

Reduced-order model (design model)
A reduced-order model (design model) for the three-story structure equipped with
an active tendon system has been derived from the evaluation model in Spencer et al'> *

using balreal and modred functions in MATLAB control system toolbox'* as follows

X, =AX; +Bu+EX, (1)
Ye=Cy X, +Dy u +F X +v 2)
2, =CyX; +Dju+ 1:“zrj.(g (3)

where x, is the reduced-order state vector with a dimension r=12, Xg is the scalar

ground acceleration, u is the scalar control input, y, =[x, X1, Xa2, X3, f, ig]' is the
output feedback vector of responses that can be measured directly, z, =[ x;, X,, X3,
Xp» X, X2, X3, Xp, Xa1, Xa0, Xu3, f] is the control output vector to be regulated.
Here, x; is the relative displacement of the ith floor with respect to the ground, X,; is the

absolute acceleration of the ith floor, Xp is the displacement (stroke) of the actuator, f is

the tendon force, v is a vector of measurement noises, and A,, B, E,, Cyr , Dy Cyps

yr»

Dy, Fj; and F,, are matrices and vectors of appropriate dimensions. Further, we have

r?



the freedom to choose appropriate control output z, and feedback output y, based on our

control objective and sensor installations.
Design of optimal polynomial controller

An optimal polynomial controller for the linear system, Eq.(1), was obtained by

minimizing a polynomial performance index [Agrawal and Yang6’ "
oo K . ' _
J=[[xtQx, +u'Ru+ Zz(x'rMixr)“l(x rQ;x,)+h(x,)Idt 4
0 i=

in which a prime indicates the transpose of a matrix or vector and
—_— k . ' ) K .
h(x,)=[2 (xiM;x;)"1xM;IBR-IBT X (xM;x,)i"1M;x, ] %)
i=2 i=2

In Eq.(4), Q and Q;, i=2, 3...,k, are positive semi-definite state weighting matrices, R
is a positive scalar control weighting element, and M;, i=2, 3, ..., k are positive-
definite matrices. The first two terms in Eq.(4) are the classical quadratic terms, whereas
the third term in summation is polynomial in x, of different orders higher than the
quadratic term. The last term E(xr), Eq.(5), is added such that simple analytical
solutions can be obtained. Weighting matrices Q, R and Q, (i=2, 3,..., k) can be chosen
arbitrarily to penalize selected quantities. However, the matrices M; (i=2, 3,..., k) are
implicit functions of the weighting matrices Q; (i=2, 3,..., k), which will be given later.
Because of the particular identification method used for constructing the
evaluation and design models, reduced-order states, X, , are not the physical states of the
structure. The control output vector z,, Eq.(3), involves not only x, but also the control

u and the earthquake ground acceleration X Due to the nonlinear nature of the

g
controller, it is difficult to construct appropriate weighting matrices Q and Q; (i=2, 3, ..,
k) for z,. Hence, Q and Q; are chosen by neglecting the contributions of u and X, in z,

as follows

Q = C'Zl'QdCzr > Q] = C'ZIQdiCzr’ l= 27 3, (TR k (6)



where Q4 and Qg are (12x12) diagonal weighting matrices. Elements of weighting
matrices Qg and Qg should be chosen by considering relative importance of the
elements in z,.

The performance index in Eq.(4) has been minimized by solving the Hamilton-
Jacobi-Bellman equation. An optimal polynomial control law is obtained analytically

[Agrawal & Yang6‘ 7] as
K
u(t) =-R-IB.Px,(t)- R™IB" X (x;M;x,)i"IM;x, €)
i=2

in which positive-definite gain matrices P and Mi's are obtained by solving algebraic
Riccati and Lyapunov equations, respectively
PA+AP-PBR-IBP+Q=0 8)
M;(A-BR-IBP)+(A-BR"IBP)M; +Q; =0, fori=2,3, ...,k ©))
The optimal polynomial controller in Eq.(7) consists of linear and nonlinear parts. The

linear part is the same as that of the linear quadratic regulator (LQR), while the nonlinear

part of the controller consists of odd-order multinomials in terms of the states x,, i.e.,
cubic, quartic, quintic, etc. Matrices P and M;’s in Eqs.(8) and (9) can be solved using

any well-known numerical algorithm or using functions available in MATLAB.
Kalman-Bucy Estimator for x,

The implementation of the optimal polynomial controller in Eq.(7) requires the
knowledge of the reduced-order vector x,, which should be estimated from the
measurement vector y, = [Xx,, X4, X52, Xa3, f, Xg1. The Kalman-Bucy filter described

1'>13 is given as follows

in Spencer et a
X, = A X, +Bu+ Lo (y, - Cy X, — Dy, u) (10)
in which X, is the estimated state and L, is the observer gain matrix. For on-line

integration, the observer in Eq.(10) can be written as

X, = (A;=LoCy) X, + (B, =Dy u + L,y, (11)



Since the polynomial controller is nonlinear, the on-line implementation of the

observer in Eq.(11) requires not only the measurement y, but also the control command

u. The observer in Eq.(11) was derived using the separation principle, which applies only
to linear controllers. It has not been shown analytically that the observer in Eq.(11) can
be used for the polynomial controller. Further, unlike linear controllers, the stability of
the observer in Eq.(11) for nonlinear controllers can be investigated only through
numerical simulation. Despite of the drawbacks above, we shall use the observer
equation in Eq.(11) to investigate the performance of the polynomial controller.

The optimal controller in Eq.(7) includes the linear controller (first part) as a
special case which is the LQG controller, when the observer in Eq.(11) is used.
Consequently, the optimal polynomial controller investigated herein is more general than
the LQG controller, and hence it provides the designer with more degrees of flexibility for
different control objectives.

The stability of the polynomial controller in Eq.(7) has been proved in Agrawal
and Yang®” and it can be shown that the system in Eq.(1) using the polynomial controller
is asymptotically stable. For the benchmark problem in Eqgs.(1) to (3), the reduced-order
state vector X, has to be estimated from the output measurements y, using the Kalman-
Bucy filter, Eq.(11). For the LQG controller, i.e., the linear part in Eq.(7) and the
estimation of x, (i.e., X,) from Eq.(11), the stability of the closed-loop system can be
established based on the separation principle [e.g., Meirovitch'>]. On the other hand, the
stability of the closed-loop system for the polynomial controller in Eq.(7) using the
estimation of x, (i.e., X,) from Eq.(11) cannot be guaranteed, because the separation
principle is not applicable. However, it has been found through the results of numerical

simulations that the closed-loop system given by Eqgs.(1), (7) and (11) is generally stable.
NUMERICAL SIMULATIONS

Numerical simulations were conducted using the MATLAB SIMULINK program
for the evaluation model subject to the El Centro, Hachinohe and stochastic earthquakes,
as described in Spencer et al'> 13 For the zeroed system, i.c., the system with the control

command u(t)=0, the peak response quantities due to the El Centro and Hachinohe



earthquakes are shown in columns (2) and (3) of Table 1. The root-mean-square response
quantities due to the stochastic earthquake are presented in column (5) of Table 1.
Quantities in Table 1 will serve as the measure of the performance of the active tendon
system.

With active control, the control output z, is chosen tobe z, =[ d;, d,, ds, Xp>
X1, X2, X3, Xp, X1, X2, Xu3, f] in which d; indicates the ith interstory drift. We

shall investigate only two controllers; namely, the linear controller (LQG), i.c., the first
part in Eq.(7), and the cubic controller, i.e., the first part and the second part with k=2 in
Eq.(7). For each controller, three different design cases are considered; namely, 5-sensor,

3-sensor and 1-sensor. The output feedback quantities for the three cases are as follows:
(i) S-sensor case; y, = [X,, Xy, Xap, Xa3, ], (i) 3-sensor case; y = [Xy1, a2, Xa3]
and (iii) 1-sensor case; y,=X,3. For each of the design cases above, the states of the
reduced-order system, X,, are estimated from the Kalman-Bucy observer, Eq.(11). The

observer gain L, in Eq.(11) has been designed by choosing ngxg =05 and S,, =1,

where I, is the (mxm) identity matrix with m being the number of sensors [Spencer et

al'>'%]. Fig.1 shows the SIMULINK model for the polynomial (cubic) controller with 5-

sensor measurements. In Fig. 1, the term “linear gain” stands for the first part of the
controller in Eq.(7), i.e., R™'B,P, and the term “nonlinear gain” stands for the second part
of the controller, R™1BM,, where M, is obtained from Eq.(9) for k=2. Other blocks
displayed in Fig. 1 are the same as that described in Spencer et al'.

For the three linear controllers (LQG) described above, the control parameters are
as follows: (i) 5-sensor case; Qg =diag [1,1,1,0,0,0,0,0, 1, 1, 1, 6], R=4.0, (ii) 3-
sensor case; Qg=diag[1,1,1,0,0,0,0,0, 1, I, 1, 8.5], R=10.0, and (iii) 1-sensor case;
Q4=diag [1,1,1,0,0,0,0,0, 1, 1, 1, 8.5], R=2.5. For the three polynomial (cubic)
controllers, the control parameters are chosen as follows: (i) 5-sensor case; Qg4 =diag [1,
1,1,0,0,0,0,0, 1, 1, 1, 4], Q4,=diag [1,1,1,0,0,0,0,0, 1, 1, 1, 2], R=10.0, (ii) 3-
sensor case; Qg=diag[1,1,1,0,0,0,0,0, 1, 1, 1, 1], Qq4,=diag [1, 1, 1,0,0,0,0,0, 1,
1, 1, 1], R=10.0, and (iii) 1-sensor case; Q4=diag [1, 1,1, 0,0,0,0,0, 1, 1, 1, 6],



Qgp=diag [1,1,1,0,0,0,0,0, 1, 1, 1, 3.8], R=60.0. All the controllers above are first

designed such that the control constraints, e.g., maxlu(t)l£3, max'xp(t)'S?; and
t t

maxlf(t)l <12, are satisfied for the El Centro earthquake. Then, further simulations are
t

conducted using Hachinohe and stochastic earthquakes to verify whether all the control
constraints are satisfied or not. The controller is redesigned using the El Centro
earthquake, if any of the constraints is violated. All the controllers are designed to utilize

as much as possible the capacity of the actuator (i.e., the control efforts) without violating

the control constraints, i.e., maxlu(t)|$3, maxlxp(t)ls3 and maxlf(t)|$12. Numerical
. t t t

simulations for all the controllers presented above are conducted by incorporating time-
delays and measurement noise as specified in the benchmark problem using the
SIMULINK modules in Fig. 1. In Fig. 1, the “Sensor Noise” block adds the specified
noise to sensor measurements, the “Discrete Controller” implements the Kalman-Bucy
filter with a sampling rate of 0.001 sec., and the “Unit Delay” block introduces the
computational time-delay of 200 psec. Besides this, magnitudes of all the output
measurements as well as the control signal u(t) have been limited to 3V using the two
saturation blocks in Fig. 1.

Simulation results for the evaluation criteria J; to J;o of the evaluation model for

the El Centro, Hachinohe and stochastic earthquakes are presented in Table 2. The root-

mean-square control voltage under the stochastic earthquake is denoted by ¢, in Table 2,
whereas the peak control voltage under El Centro and Hachinohe earthquakes are denoted
by u, in the table. For the stochastic earthquake, the results presented in Table 2 for the

evaluation criteria J;, ..., J5 and o, are somewhat different from that specified in
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Spencer et al ”. We did not vary the earthquake parameters Cg and ®,, because it takes

too much computer time to search. The results presented in Tables 1 and 2 correspond to

the nominal values Cg=0.3, ®g=14.5 rad/sec, and Ty=750 secs [Spencer et al'®]. Further, for the

deterministic earthquakes, i.e., El Centro and Hachinohe, we don’t choose the maximum

value for Jg¢, ..., Jjo and up, but present all the results for each earthquake in Table 2.



For the 5-sensor case, evaluation criteria and other control quantities for linear and
nonlinear controllers are presented in columns (2) and (3), respectively.

Comparing the evaluation criteria J; to I, for the two controllers in Table 2, it is

observed that the performance of the cubic controller is slightly worse than that of the
linear controller for El Centro and Hachinohe earthquakes. The reasons will be explained
later in the conclusion. For the stochastic earthquake, the responses for the cubic
controller are slightly higher but the required control efforts are slightly smaller. For all
the simulation results presented in Table 2, although all the constraints on the control
efforts given in Spencer et al'® are satisfied, the margins for some of the constraints are
quite small since controllers are designed to use the control efforts as much as possible
without a violation of constraints.

The control energy requirement at any time instant t can be calculated as
t
E () =] xp I dt (12)
0

For the El-Centro earthquake, the time-history plots of the control energy buildup for
linear and cubic controllers for the 5-sensor case are presented in Fig. 2. It is observed
from Fig. 2 that although the cubic controller requires higher peak control command as
compared with the linear controller (Table 2), the total control energy requirement by the
cubic controller is slightly smaller than that of the linear controller.

The results presented so far are obtained using earthquakes with specified
intensities, e.g., the peak ground acceleration (PGA) for the El-Centro earthquake is
0.348g. Since the peak ground acceleration of earthquakes is stochastic in nature,
simulations have been conducted for the S-sensor case by varying the peak ground
acceleration (PGA) of the El Centro earthquake from 0.2g to 1.0g. In this case, all the
constraints, such as the peak voltage, have been removed for the PGA greater than
0.348g. Results of simulation for the same linear and cubic controllers above are

presented in Figs. 3 to 7. Fig. 3 shows the reduction in percentage (%) of the peak floor
displacement, max |xi(t)|, as a function of PGA. As expected, the reduction percentage

for the peak displacements for the linear controller remain constant. On the other hand,

the reduction percentages for the peak displacement by the cubic controller increase with



the increase of PGA. It should be noted from Fig. 3 that the percentage of reduction for
the first floor displacement is about the same for the linear and cubic controllers at the
design PGA of 0.348g. It is further observed from Fig. 3 that (i) for PGA < 0.348g, the
peak displacement reduction for the cubic controller is smaller than that for the linear
controller, and (i1) for PGA > 0.348g, the peak displacement reduction for the cubic
controller is higher than that of the linear controller. The latter behavior is very desirable,
since a larger percentage of reduction for the peak displacement is needed when the actual
earthquake intensity exceeds the design one. However, as will be shown in the following,
such a higher percentage of reduction for the peak displacement is accompanied by the
requirement of larger control efforts.

Fig. 4 shows the plots of the percentages of reduction for the peak floor absolute
acceleration vs. PGA. As expected, the percentages of reduction for the peak floor
acceleration remain constant for the linear controller. However, the results degrade

slightly, in the range of +5%, for the cubic controller. Fig. 5 shows the plots of two

evaluation criteria J¢ and J; defined by

d d d X X X
Jg=max{ L, =2, 24 I =maxy 2L, 222, 2 (13)
t (X3 X3 X3p t X300 X330 X3

for the El Centro earthquake. It is observed from Fig. 5 that while Jg and J5 remains

constant for the linear controller, Jg decreases and J5 increases with respect to PGA for

the cubic controller. Hence, for the cubic controller, the reduction for the peak interstory
drift increases with PGA whereas the reduction of the peak floor acceleration reduces
with PGA.

Fig. 6 shows the plots of normalized peak tendon force, f, and peak control signal,
u, vs. PGA. These quantities have been normalized, respectively, by f = 29.867 kN and
u= 6.967 volts, which are obtained for the linear controller with 1g El Centro earthquake.
For the linear controller, the plots for f and u coincide with each other as expected and
they are denoted by the solid curve. For the cubic controller, it is interesting to note that
the peak tendon force is very close to that of the linear controller. Consequently, the

control force requirements for the linear and cubic controllers are about the same.

10



Further, it is observed that the control signal u increases significantly with PGA for the
cubic controller.

The normalized peak actuator stroke x, and peak actuator velocity x, vs. PGA

p

are displayed in Fig. 7. These quantities have been normalized, respectively, by x, =
0.859 cm and )'(p = 16.734 cm/sec., which are obtained for the linear controller with 1g El
Centro earthquake. In Fig. 7, the plots of normalized x, and x, coincide with each other

for the linear controller as expected, and they are indicated by the solid curve. It is
observed from Fig. 7 that, when the earthquake peak ground acceleration (PGA) exceeds
the design one (i.e., 0.348g), the cubic controller requires actuators with a longer stroke
and a bigger velocity than that required by the linear controller. Consequently, when the
actual earthquake intensity exceeds that of the design earthquake (i.e., PGA > 0.348g), the
nonlinear controller achieves a higher level of reduction for peak displacements than the
linear controller but at the expense of requiring larger control efforts, including peak
stroke and peak velocity of the actuator. Note that the linear controller can achieve the
same percentage of displacement reduction as the nonlinear controller for earthquake
larger than the design PGA (i.e., PGA > 0.348g) by using a higher gain. However, a
higher gain will lead to the violation of the constraints on the control efforts (actuator

capacity) at the design earthquake (i.e., PGA = 0.348g).
CONCLUSIONS

The performance of optimal polynomial controllers for the active tendon system
of the benchmark problem has been investigated. A Kalman-Bucy estimator has been
used for the on-line estimation of the states of the design model. The polynomial
controller includes the LQG controller as a special case. Hence, it provides more degrees
of flexibility for the designer to deal with particular control objectives. Numerical
simulations have been conducted for various cases of linear and cubic order controllers,
and the performances of linear and nonlinear controllers have been compared on the basis
of the simulation results.

Based on the simulation results presented in this paper for a benchmark problem

11



and that presented in the literature [Refs. 2-7], the advantages of the polynomial
controllers over linear controllers depend on the particular structure considered and the
particular earthquake record used. For instance, it was found in Refs. 2-3 that the
polynomial controller is more effective in limiting the peak response for the same level of
peak control force. This situation was not observed in Refs. 3-7. It was found in Refs. 3-
7 that for many earthquake records, the required control energy for polynomial controllers
is smaller than that for linear controllers for the same level of peak response reduction. In
particular, the nonlinear controller requires much smaller control energy than the linear
controller for the Mexico earthquake [Refs. 6, 7]. For the particular benchmark problem
considered in this paper, neither of the advantages above is observed. Rather, the
performance of nonlinear controllers in some cases is slightly worse than that of linear
controllers for the given design earthquake, i.c., PGA = 0.348g. The main reason is
explained in the following.

Since the state variables in the reduced-order state vector, x,, are not physical

quantities, there is a difficulty to minimize the performance index in terms of the control
output z_, that is a function of the state vector x,, control u and ground acceleration X g
for nonlinear controllers. The approximation of the control output z, by C,.x, for
nonlinear controllers in adjusting the weighting matrices in Eq.(6) makes the design of the
polynomial controller more involved, i.e., requiring more trials for the weighting

matrices, and there is no direct relation between the weighting element and the element of

the control output z,. This problem doesn’t exist if either the state variables used for the

structural model are physical quantities, such as those used in the literature [Refs. 2-7], or
the controller is linear. Further, since the MATLAB SIMULINK program is used for

simulations, the estimation of the state vector X, for the polynomial controller requires

longer computer time.

In comparison with the linear controller (LQG), despite of the drawback above,
the polynomial controller has the capability of achieving a higher level of reduction for
the peak displacement at the expense of larger control efforts (i.e., actuator stroke and
velocity) if the earthquake intensity is bigger than the design one. This advantage is

consistent with that observed in the literature [Refs. 5-7]. Simulation results demonstrate

12



that, for the cubic controller, the percentage of reduction for the peak displacement
increases with respect to the earthquake intensity. This property is quite desirable for
protecting civil engineering structures, since the earthquake intensity is stochastic in
nature. Finally, the optimality of the polynomial controller presented in this paper is
meaningful only after weighting matrices and the order of nonlinearity are defined,

similar to the interpretation of the LQR controller.
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Table 1 : Structural Response Quantities for the Zeroed System.

El Centro Hachinohe Stochastic Earthquake
(D (2) 3) “) &)
Quantities Story Story Quantities Story
1 2 3 1 2 3 ) 2 3
x; (cm) 20314971657 ]|1.1912.95]3.85 o, (cm) 0.70 | 1.81 | 2.41
d; (cm) 2031309181 1.19]|1.77]0.95 0, (cm) 0.70 | 1.11 | 0.60
X, (8) 1.08 1 1.28 | 1.57 1 0.43 ] 0.67 | 0.78 o; (8) 0.1510.37 | 0.49
x, (cm) 0.060 0.035 o, (cm) 0.020
x,, (cm/s) 1.072 0.490 oy (cm/s) 0.291
f (KN) 23.08 13.54 o (KN) 7.90
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Table 2 : Comparison of evaluation criteria using linear and polynomial
controllers for the Active Tendon System.

Quantities | Linear | Cubic
Five-Sensor Casey, = [xp, Xa11 Xg2 Xa3, f]
(1) (2) (3)
N 0.1562 0.1795
J 0.3347 0.3850
J3 0.0314 0.0270
s 0.0333 0.0289
J5 0.0092 0.0105
gy (volts) 0.5845 0.5034
o; (kN) 2.6533 3.0466
oy, (cm) 0.0735 0.0632
El Centro Hachinohe El Centro Hachinohe
J 0.2380 0.3155 0.2251 0.3319
J; 0.4869 0.8469 0.5119 0.8900
Jg 0.0464 0.0672 0.0547 0.0749
Jg 0.0584 0.0656 0.0757 0.0674
Jio 0.0360 0.0291 0.0373 0.0312
max [u] (volts) 2.4287 2.0118 2.8633 2.2339
max|f| (kN) 10.4082 8.4164 10.7772 9.0228
max|Xxp| (cm) 0.2994 0.2540 0.3526 0.2830
Three-Sensor Casey, = [X,q, X;0) X33l
(4) (5) (6)
Ji 0.1831 0.2136
s 0.3920 0.4573
J3 0.0268 0.0227
N 0.0283 0.0242
Js 0.0106 0.0124
g, (volts) 0.4961 0.4215
o; (kN) 3.0712 3.5969
Ox, (cm) 0.0627 0.0532
El Centro Hachinohe El Centro Hachinohe
Jg 0.2841 0.3335 0.2596 0.3549
J; 0.5461 0.8716 0.5286 0.9123
Jg 0.0398 0.0472 0.0506 0.0490
Jo 0.0472 0.0503 0.0658 0.0498
Jio 0.0409 0.0296 0.0412 0.0320
max|ul (volts) 2.0377 1.4157 2.5792 1.4641
max|f| (kN) 11.8220 8.5672 11.9065 9.2366
max |xp (cm) 0.2568 0.1785 0.3264 0.1851
One-Sensor Casey, = [X_]
) (8) 9)
J1 0.1374 0.1916
J 0.2938 0.4111
J3 0.0380 0.0268
s 0.0397 0.0285
J5 0.0081 0.0112
oy (volts) 0.7049 0.4990
as (kN) 2.3276 3.2449
Ox, (cm) 0.0888 0.0627
El Centro Hachinohe El Centro Hachinohe
Js 0.2137 0.3090 0.2349 0.3528
J; 0.4879 0.8228 0.5022 0.8941
Jg 0.0570 0.0806 0.0585 0.0709
Jg 0.0657 0.0855 0.0741 0.0766
Jio 0.0343 0.0277 0.0397 0.0320
max [u] (volts) 2.9243 2.4210 2.9289 2.1366
max|f| (kN) 9.9068 8.0070 11.4668 9.2540
max|Xp| (cm) 0.3675 0.3047 0.3771 0.2681
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Control Energy Buildup (kN-cm)

Fig. 2:
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Control energy buildup for linear and nonlinear controllers with 5 sensors for
El Centro earthquake.
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Reduction in Floor Disp. (%)
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Reduction in peak floor displacement vs. peak ground acceleration for El Centro

earthquake.
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