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Abstract

The structured singular value () synthesis technique is used to design controllers for
the Active Mass Damper (AMD) Benchmark problem. The motivation for using p
synthesis is its ability to directly incorporate performance and robustness objectives
into a multivariable control design framework. In addition to stated performance ob-
jectives, robustness of the controllers to high frequency unmodeled dynamics (the ne-
glected high frequency modes of the evaluation model), modeling error in the actuator
dynamics and variations in the first structural natural frequency and damping value
are considered in the design. The resulting controller achieves similar performance
levels on the nominal evaluation model and the evaluation model with significant

variations in its first natural frequency and damping value.

1 Benchmark Problem: Active Mass Driver

The structured singular value (u) framework is applied to the Active Mass Driver
(AMD) benchmark problem describe in references [1, 2]. The objective is to actively
control this three-story, single-bay, scale model of a building. A single active mass
driver (AMD) actuator, located on the third floor of the structure, is used for con-
trol. The base of the structure is mounted to a shake table to simulate earthquake
loadings. Six measurements are available for feedback: accelerometers at the base of
the structure, on each story, and on the actuator mass and an LVDT displacement

sensor attached to the actuator.

The objective is to design a discrete-time feedback compensator that minimizes ten
performance objectives. Five of the performance objectives correspond to minimizing
rms responses of the structure and actuators. The other five performance objectives
correspond to minimizing maximum displacements, accelerations and voltages. Two
linear time-invariant models of the AMD structure are provided. The 10-state model
is used for control design and the high-fidelity, 28-state evaluation model is used for
analysis and simulation. The AMD benchmark problem does not directly include
objectives or specifications on the robustness of the control design to modeling errors

(model uncertainty). Using the 10-state AMD model for control design will require
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the controller to be robust (insensitive) to differences between the 28-state evaluation
model and the 10-state design model. In addition to these neglected dynamics, the
control design presented in this paper includes uncertainty models to account for ac-
tuator errors, sensor noise and variations in the damping value and natural frequency

of the first structural mode.

2 The Structured Singular Value (1) Framework

Linear fractional transformations (LFTs) form the basis of the structured singular
value (y) framework. Figure 1 shows the standard control analysis and synthesis
block diagrams. The A block corresponds to structured perturbations or uncertainties
and K corresponds to the controller. Any linear interconnection of inputs, outputs,
commands, perturbations and controller can be rearranged to match these diagrams.
The p framework allows the incorporation of knowledge of the modeling errors and

performance objectives into the control analysis and design problem.
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Figure 1: Linear Fractional Transformation Description of Control Problem

The structured singular value, y, is used to analyze linear fractional transformations
when the A block has structure. In the definition of u (M), there is an underlying
structure A (a prescribed set of block diagonal matrices) on which everything in the
sequel depends. This structure may be defined differently for each problem depending
on the uncertainty and performance objectives of the problem. Defining the structure
involves specifying three things: the total number of blocks, the type of each block,

and their dimensions.



2.1 The Complex Singular Value

Two types of blocks—repeated scalar and full blocks are considered. Two nonnegative
integers, S and F', denote the number of repeated scalar blocks and the number of
full blocks, respectively. To bookkeep the block dimensions, we introduce positive
integers rq,...,rs; mi,...,mp. The ¢'th repeated scalar block is r; x r;, while the
4’th full block is m; x m;. With those integers given, define A C C™*", complex

square matrices, as
A = {d]ag [61]T1? ceey 6SIr57 AS-H) R AS—{—F] .

(5,‘EC,A5+]‘ECmJXTnJ,1§i§S,1SjSF}

(1)

For consistency among all the dimensions, we must have 33, r; + Ef;l m; = n.
Often, we will need norm bounded subsets of A, and we introduce the notation
Ba ;= {Ac A:6(A)<1}. Note that in equation (1) all of the repeated scalar
blocks appear first, followed by the full blocks. This is done to simplify the notation
and can easily be relaxed. The full blocks are also assumed to be square, but again,

this is only to simplify notation.

Definition 2.1 For M € C™", ua (M) is defined

1
Ha (M) = — (6(A): A€ A det (I — MA) =0}

unless no A € A makes I — MA singular, in which case pia (M) := 0.

It is instructive to consider a “feedback” interpretation of pa (M) at this point. Let
M € C™*™ be given, and consider the loop shown in Figure 2. This picture is meant to
represent the loop equations u = Mv,v = Au. Aslong as I — M A is nonsingular, the
only solutions u, v to the loop equations are u = v = 0. However, if I —M A is singular,
then there are infinitely many solutions to the equations, and the norms ||u||,||v|| of
the solutions can be arbitrarily large. Motivated by connections with stability of
systems, we call this constant matrix feedback system “unstable”. Likewise, the
term “stable” will describe the situation when the only solutions are identically zero.
In this context then, fia (M) provides a measure of the smallest structured A that
causes “instability” of the constant matrix feedback loop in Figure 2. The norm of

this “destabilizing” A is exactly 1/ua (M).
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Figure 2: M — A interconnection

We can relate fip (M) to familiar linear algebra quantities when A is one of two

extreme sets:

e If A ={61:6cC} (S=1,F=0,r =n), then ip (M) = p(M), the spec-
tral radius of M. The spectral radius is defined as the maximum magnitude

eigenvalue of the matrix M.

o If A=CV" (§=0,F=1,m;=n), then pup (M) =26 (M)

Obviously, for a general A as in (1) we must have {6I,,: 6§ € C} C A C C**". Hence

directly from the definition of x, and the two special cases above, we conclude that
p(M) < pa(M) <o (M) (3)

These bounds by themselves may provide little information on the value of y, be-
cause the gap between p and & can be large. The bounds on p can be refined with
transformations on M that do not affect pa (M), but do affect p and 7. To do this,
define two subsets, Qa and Da of C**"

Qar ={QeA:QQ =1} (4)
dlag [Dl,. . .,DS,dS+1Im1,. .. 7dS+FImF] :
Dp = (5)
D; e C*" Dy = D7 > O,ds.H‘ € R, ds+j >0

Note that for any A € A, Q € Qa, and D € Da,
Q" €Qa, QAcA, AQeA o(QA)=0(AQ)=0(AD) (6)

DA = AD (7)



Therefore, the bounds in equation (3) can be tightened to

—_ 1 T -1
glggp(QM) < AIQE’;"(AM) = pa(M) < info (DmMD™) (8)

The lower bound, maxgeq p(@M), is actually always an equality [3].Unfortunately,
the quantity p(QM) can have multiple local maxima which are not global. Thus
local search cannot be guaranteed to obtain x, but can only yield a lower bound. The
upper bound can be reformulated as a convex optimization problem, so the global
minimum can, in principle, be found. Unfortunately, the upper bound is not always
equal to p. For block structures A satisfying 25 4+ F' < 3, the upper bound is always
equal to s (M), and for block structures with 25 + F' > 3, there exist matrices for
which g is less than the infimum [3, 4].

2.2 The Real/Complex Structured Singular Value

Up until this point, this section has dealt with complex-valued perturbation sets.
In specific instances, it may be more natural to describe modeling errors with real
perturbations, for instance when the real coeflicients of a linear differential equation
are uncertain. While it is possible to simply treat these perturbations as complex and
proceed with a complex p analysis, the results may be conservative. Hence, theory
and algorithms to test for robustness and performance degradation with mixed (real

blocks and complex blocks) perturbation have been developed.

Definition 2.1 of u can be used for more general sets A, such as those containing
real and complex blocks. Typically, there are 3 types of blocks—repeated real scalar,
repeated complex scalar, and complex full blocks. S and F, denote the number of
repeated, complex scalar blocks and the number of complez full blocks, respectively.
V denotes the number of repeated, real scalar blocks. The block dimensions of the
real block are denoted by the positive integers t1,...,ty. With these integers given,

and r; and m;, define A as

A = {diag (671, 800y, 6511, 85 s Avisits ., Avisyr]

L ER, 65, € C Ayysy; €C™ ™ 1<k<V,1<i<81<j<F}

(9)

For consistency among all the dimensions, we must have Y7, tx+55 m+2f=1 m; = n.
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The mixed u function inherits many of the properties of the purely complex u func-
tion [3, 5]. The theory for bounding (both lower and upper) mixed real/complex
bounds is much more complicated to describe than the bounding theory for complex
g. The lower bound for the mixed case is a real eigenvalue maximization problem.
Techniques for approximately solving for a mixed p lower bound using power algo-
rithms have been derived, and are similar to those used for a lower bound for complex
¢ [6]. The mixed p upper bound takes the form of a more complicated version of the
same problem, involving an additional “G' scaling matrix” which only scales the real

uncertainty blocks.

2.3 Linear Fractional Transformations and p

The use of y in control theory depends to a great extent on its intimate relationship
with a class of general linear feedback loops called Linear Fractional Transformations
(LFTs) [7]. This section explores this relationship with some simple theorems that
can be obtained almost immediately from the definition of u. To introduce these,

consider a complex matrix M partitioned as

Wy | M M (10)
M21 M22

and suppose there is a defined block structure Aj which is compatible in size with

My (for any Ay € Aq, My14\; is square). For A; € Ay, consider the loop equations
2= Myw+ Miad; e = Myyw + Mygd; w= A1z (11)

which correspond to the block diagram in Figure 3.

Ay

M

d

Figure 3: Linear Fractional Transformation
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This set of equations (11) is called well posed if for any vector d, there exist uni.que
vectors w, z, and e satisfying the loop equations. The set of equations is well posed
if and only if the inverse of I — My;A; exists. If not, then depending on d and
M, there is either no solution to the loop equations, or there are an infinite number
of solutions. When the inverse does indeed exist, the vectors e and d must satisfy

e = F,(M,A)d, where
Fy (M, A) i= Moy + Moy Ay (1 — M1y Ay) ™ My, (12)

F,(M,A;) is called a Linear Fractional Transformation on M by Ay, and in a
feedback diagram appears as shown in Figure 3. F, (M, A;) denotes that the “upper”
loop of M is closed by A;. An analogous formula describes F; (M, Az) which is the

resulting matrix obtained by closing the “lower” loop of M with a matrix A; € A,.

In this formulation, the matrix My, is assumed to be something nominal, and A; €
Ba, is viewed as a norm bounded perturbation from an allowable perturbation class,
A;. The matrices My, My, and My, and the formula F, (M,A,) reflect prior
knowledge on how the unknown perturbation affects the nominal map, My,. This
type of uncertainty, called linear fractional, is natural for many control problems,

and encompasses many other special cases considered by researchers.

3 Control Design via y Synthesis

Consider the standard linear fractional description of the control problem shown in
Figure 1. The P block represents the open-loop interconnection and contains all of
the known elements including the nominal plant model, uncertainty structure and
performance and uncertainty weighting functions. The A, block represents the
structured set of norm bounded uncertainty being considered and K represents the
controller. A,.,; parametrizes all of the assumed model uncertainty in the problem.
Three groups of inputs enter P, perturbations z, disturbances d, and controls u, and
three groups of outputs are generated, perturbations w, errors e and measurements
y. The set of systems to be controlled is described by the LFT

{Fu (Apertap) : ApeTt € SApert}’
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The design objective is to achieve “robust performance.” That is find a stabilizing
controller K, such that for all Apers € SA,..» ||Apertlloc < 1, the closed-loop system

is stable and satisfies

||Fu [Fl(Pa I() 7Apert] Hoo S 1.

The performance objective involves a robust performance test on the linear fractional
transformation F) (P, K). Achieving robust performance implies that the performance
objective is achieved for all plant defined by the model set F, (P, Ap.¢). To assess

the robust performance of the closed-loop system, define an augmented perturbation

A — Apert O
0 Ar

The goal of p synthesis is to minimize over all stabilizing controllers K, the peak

structure, A,

: APert € Aperia AF € Cndxne}

value of LA (+) of the closed-loop transfer function Fi(P, K) across frequency w. This
corresponds exactly with achieving robust performance for the generalized model P.

More formally,

min  max jia [F(P,K) ()] (13)
stabilizing

For tractability of the p synthesis problem, pia [] is replaced by the upper bound

for p, 6 [D(-)D7']. The scaling matrix D is a member of the appropriate set of

scaling matrices D for the perturbation set A. One can reformulate this optimization

problem as follows

. . _ - -1
r]?gn max min O'[DWF](P,[X)(]W)DW ] (14)
stabilizing

Here, the D minimization is an approximation to the pa [Fi( P, K)(jw)]. D, is chosen
from the set of scalings, D, independently at every frequency w. Hence, we have
min  min max & D, Fy(P, K)(jw) D3] (15)

K D, w
stabilizing DyeD

The expression max o [-] corresponds to ||[-]|| .., leaving
min  min ||[D.F(P,K)(3)D7]| (16)

K D( 9 o
stabilizing D,eD
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Assume, for simplicity, that the uncertainty block A,.,; only has full blocks. Then

the set DA is of the form
D={d1ag[d1],d2],,dF_ll,I] dz>0} (17)

For any complex matrix M, the elements of DA, which were originally defined to be
real and positive, can actually take on any nonzero complex values and not change

the value of the upper bound, })2%5 (DMD_I). Hence, we can restrict the scaling

matrix to be a real-rational, stable, minimum-phase transfer function, D(s) The

optimization is now

min min IDF(P, K)D™Y|oo (18)
K D(s)eD
stabilizing g4 ahle min-phase

This approximation to u-synthesis, is currently “solved” by an iterative approach,

referred to as “D — K iteration.”

To solve equation 18, first consider holding D(s) fixed. Given a stable, minimum
phase, real-rational D(s), solved the optimization
min ||[DF(P,K)D™||s

K

stabilizing

This equation is an H., optimization control problem. The solution to the H.
problem is well known and consists of solving algebraic Riccati equations in terms of

the state-space system [8].

Now suppose that a stabilizing controller, K(s), is given, we then solve the following
minimization corresponding to the upper bound for p.

S - -1
min o [DwFl(P, K)(yw)D,, ]

This minimization is done over the real, positive D, from the set D defined in
equation (17) across frequency w. Recall that the addition of phase to each d; does
not affect the value of o [D,Fi(P, K)(yw)D;']. Hence, each discrete function, d;, of
frequency is fit (in magnitude) by a proper, stable, minimum-phase transfer function,

cZRi(s). These are collected together in a diagonal transfer function matrix ﬁ(s),

D(s = diag dr 8],623251,...62[3_ ), I
1 F—-1
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and absorbed into the original open-loop generalized plant P. Iterating on these two

steps comprises the current approach to D — K iteration.

There are several problems with the D — K iteration control design procedure. The
first is that we have approximated fta (-) by its upper bound. This is not a serious
problem since the value of p and its upper bound are often close. The most serious
problem is that the D — K iteration does not always converge to a global, or even
local minimum [9]. This is a more severe limitation of the design procedure. However,
in practice the D — K iteration control design technique appears to work very well
on many engineering problems and has been applied with great success to vibration
suppression for flexible structures, flight control, chemical process control problems,

and acoustic reverberation suppression in enclosures.

4 Control Problem Formulation

The structured singular value (y) synthesis technique is used for controller design [4,
8, 10, 11, 12]. The key to successfully applying p-synthesis is in formulating control
design problem. That is all robustness and performance objectives need to be posed
as minimizing the norm of weight transfer function(s). All uncertainty models need
to be normalized to magnitude less than 1 in the p framework. In this example,
this implies that the weighting functions W¢, W,,, Wi,, and W,qq need to be scaled
such that |&¢|, |6, |Ain|, and |Aaaa| are less than 1. The performance objectives are
defined in terms of minimizing the H,, norm of a weighted transfer matrix from dis-
turbances (d) to errors (e) denoted as Tq_.o. As in the robustness to modeling errors
formulation, the performance weighting functions are scaled such that when ||7g_e}|oo
is less than 1 all performance objectives are achieved. The AMD control problem is
posed as a robust performance problem, with multiplicative plant uncertainty at the
plant input, additive uncertainty around the plant, parametric uncertainty in the
natural frequency and damping value of the first mode and minimization of weighted
error transfer functions as the performance criterion [12]. The actuator voltage, dis-
placement, velocity, and acceleration signals are weighted to insure that they do not
exceed their physical capabilities. Sensor noise is included on the six measurements

to mimic the experimental system. The performance objectives are included as min-
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imizing weighted transfer functions associated with story velocities and accelerations
and inter-story displacements. A diagram of the system interconnection structure
used for control design and analysis is shown in in Figure 4. Based on Figure 4, the

generalized plant P used for control design is shown in Figure 5.

Note that the state order of the u controller is the sum of the number of states in
the generalized plant P plus twice the number of states in the D scaling matrices.
Since its is often desired to synthesize low order controllers, the lowest order weighting
functions that adequately describe the objectives are used. In this application, all

the weights are constant except for Woaq and Wearthquake-

The performance objective is to have the “true” structure, described by the control
design and uncertainty models, achieve the desired performance objectives. Note that
these models define a much richer set of structural systems than just the evaluation
model. The evaluation model is included in this set of models to be controlled, but also
included in this set are structures that have different natural frequency and damping
values of the first structural mode, different actuator gain and phase characteristics

and additional high frequency dynamics.

The Benchmark performance objectives are entirely driven by the ability of the con-
troller to attenuate the response of the first mode of the AMD structure and the
actuator acceleration limit. Therefore only the inter-story drift and the story acceler-
ations need to be heavily penalized in the control design. The performance weighting

functions in Figure 4 are defined as follows:

e Wearthquake defined as

0.00036s% + 32.1s% 4+ 66000s + 14400
s3 4 100052 4+ 754005 + 276000

is used to describe the square-root of the Kanai-Tajmi earthquake spectra. A
frequency response plot of this weight is shown in Figure 6. Wearthquake models

the frequency spectra of a general earthquake.

o W, weights to actuator control voltage input. It is selected to be 0.4. This
corresponds to a maximum of 2.5 volts being commanded to the actuator. The

error signal €,ct_voltage Peing less than 1 implies that less than 2.5 volts are being
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Figure 4: Interconnection Structure of the AMD Control Problem
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Figure 5: Generalized Plant for the AMD Control Problem

commanded to the actuator. Wynes is a 6 X 6 matrix with 0.001 in its diagonal

entries. These are estimate of the sensor noise levels.

Wietory vely Watory_drifts @0d Wetory accel are 3 X 3 matrices with diagonal entries of
(0.04, 0.025, 0.021), (0.06, 0.10, 0.23), and (0.011, 0.007, 0.006), respectively.
These weights are selected to attenuate the response of the first mode in the
control design. Each scaling was selected such that the transfer function from
base acceleration input to the corresponding output (i.e. story_vel, story_drift,
and story_accel) have a peak magnitude of 3 at the first mode of the AMD
structure. Therefore if robust performance is achieved, the response of the first
mode would be approximately attenuated by a factor of 3 in each channel. If
the response of one channel is more important than other channels, the user
would put a large scaling on the important channel as compared with the less

important channels.
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Figure 6: Frequency Response of the Kanai-Tajmi earthquake spectra, Wearthquake

® Wact_pen 18 @ 3 X 3 matrix with diagonal entries of 0.04, 0.03, 0.002, respectively.
Since the transfer functions between the actuator input and its displacement,
velocity and acceleration are related and only the first mode plays a role in
the performance objectives, only the actuator displacement output is heavily
weighted. As discussed previously, each individual transfer function is scaled
such that the constraints on the actuator displacement, velocity and acceleration

are not violated.
o Wi, is set to 0.1 corresponding to 10% uncertainty in the actuator response.

e The additive uncertainty weight, Woq4q, is defined as

11.48% +162s + 917
s% 4 103s + 17206

W,4q accounts for differences in the second and third modes of the control design

and evaluation models as well as high frequency dynamics in the evaluation
model that were not included in the control design model. The shape of the
additive uncertainty weight is selected to gain-stabilize the neglected evaluation

model dynamics. To achieve this objective, W,qq is shaped to limit the controller
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gain at high frequency. In the problem formulation, if robust performance is

achieved the controller gain at high frequency will be less than the inverse
of the additive uncertainty weight. Hence the loop gain at high frequency
will be less than 1, gain-stabilizing the neglected dynamics of the system. A
frequency response plot of W,q4 and the difference between the control design
and evaluation model is shown in Figure 7. Note that W,q4 over bounds the
difference between the control design and evaluation model to assure that the

neglected dynamics are not destabilized.

10° ¢ Amans ——y .

10 ¢

Magnitude
SO

Frequency (rad/sec)

Figure 7: Frequency Response of the Additive Uncertainty Weight, Waaa (solid), and
Errors Between the Design and Evaluation Models (dashed).

o W, is set to 0.5 or 50% error in the damping level of the first mode. A benefit of
directly designing for uncertainty in the level of damping using D — K iteration
is it results in robustness to variations in the first structural mode [12]. W,
is set to zero in the control design and set to 0.25 (12%) error in the natural

frequency of the first mode in the analysis.

Weighting functions serve two purposes in the Ho, and p framework: they allow the

direct comparison of different performance objectives with the same norm and they
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allow frequency information to be incorporated into the analysis. All the weighted per-

formance objectives are scaled to have an H,, less than 1 when they are achieved [11].

The approach taken to synthesize a discrete-time controller sampled at 1000 Hz for
the AMD structure is to synthesize a continuous-time controller via D — K iteration
and discretize it using a pre-warped Tustin transformation. This approach was taken
since a closed-loop bandwidth of approximately 80 rad/sec was desired, a factor of 30
less than the Nyquist sample rate. Therefore the effect of discretizing a continuous-
time controller is small. Alternatively, one could directly propose this problem in

discrete-time and synthesize a controller using D — K iteration [11].

5 Results

Three D — K iterations are performed to design a y continuous-time controller. The
original interconnection structure P in Figure 5 has 14 states. The D scaling matrix
after 3 iterations has 7 states. Therefore, the resulting u controller has 28-state (14
+ 7 + 7). The balanced realization method was used to reduced the controller order

to 12-states which is used in the analysis and simulations.

The robust performance and robust stability u value of the closed-loop system with
the 12-state controller implemented, and the natural frequency and damping value
treated as real perturbations were 0.87 respectively, as seen in Figures 8 and 9.
Since the performance and robustness objectives were scaled to be 1 when they were
achieved and since the robust performance u value is less than 1 (0.87), all perfor-
mance and robustness objectives were achieved simultaneously. The robust perfor-
mance g value with the natural frequency and damping value treated as complex
perturbations is 3.4 as seen in Figure 8. Since u is greater than 1 (3.4) in this case,
treating the natural frequency and damping uncertainties as complex perturbations
in the analysis of the closed-loop system, as opposed to real parameter variation,
would be overly conservative. The nominal performance value was 0.2. Hence if no
model error was present, all the performance objectives would be achieved. Based
on nominal performance, robust stability and robust performance results, the control

design was driven by satisfying the robustness objectives.
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Note that in Figures 8 and 9 there are two solid lines. These lines correspond to upper

and lower bounds on p. The p software used calculates upper and lower bounds for

{ to provide a measure of accuracy of the p calculations [11].

The p robust performance analysis test determined that the worst case variation from
a performance and stability perspective was to perturb the first natural frequency
from 36.51 rad/sec to 41.42 rad/sec and its damping value from 0.34% to 0.22%.
To investigate the effect of these changes in natural frequency and damping value,
two sets of simulations are performed. The first uses the original evaluation model
as the plant model. The second simulation perturbs the natural frequency of the
first structural mode from 36.51 rad/sec to 41.42 rad/sec and its damping ratio from
0.34% to and 0.22% damping. Time responses of the third story displacement and
acceleration, the actuator mass acceleration and command voltage for the nominal
and perturbed structural models subjected to the Hachinohe earthquake spectrum

are shown in Figures 10 and 11.

There are 10 performance indices, denoted J1 - J10, associated with the AMD bench-
mark example [2]. J1 through J5 correspond to the rms response of the AMD excited
by a stationary random process filtered through the Kanai-Tajimi spectrum. J1 corre-
sponds to the normalized maximum rms interstory drift, J2 the normalized maximum
rms story acceleration, and J3 through J5 correspond to the normalized maximum
rms actuator displacement, velocity and acceleration. J6 through J10 are performance
indices associated with the peak response due to the 1940 El Centro NS earthquake
record and the 1968 Hachinohe NS earthquake record. J6 corresponds to the nor-
malized maximum interstory drift, J7 the normalized maximum story acceleration,
and J7 through J10 corresp_ond to the normalized maximum actuator displacement,

velocity and acceleration.

Table 1 contains the J6 through J10 performance indices for the nominal and per-
turbed evaluation models with the 12-state discrete-time controller implemented.
Based on the results in Figures 10 and 11 and Table 1, the y controller is robust
to variations in the first mode natural frequency and damping value and performs
well. The value of J1 through J5 with w, = 37.3 rad/sec and (; = 0.3 for the nominal
evaluation model are (0.191, 0.293, 0.841, 0.836, 0.813 ) respectively. Based on these
results, u synthesis was able to design a controller which achieved good performance

on the AMD structure in the presence of modeling error.



El Centro Hachinohe
Nominal Model | Perturbed | Nominal Model | Perturbed
J6 0.3122 0.2588 0.3778 0.3366
J7 0.4790 0.4711 0.6791 0.5258
J8 1.2670 0.9413 1.4289 1.1931
J9 1.2141 0.9922 1.5374 1.3274
J10 1.0951 0.8227 1.2368 1.1174
max act volt 1.191 0.918 0.661 0.571
max act disp 4.270 3.172 2.372 1.981
max act accel 5.530 4.155 3.191 2.883

Table 1: Nominal and Perturbed Performance Measures
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