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Summary

Methodology for active structural control using neural networks has been proposed by
Ghaboussi and his co—workers 27:8:11.13,14.16.17 i, the past several years. The control algorithm in the
mathematically formulated methods is replaced by a neural network controller (neuro—controller).
Neuro—controllers have been developed and applied in linear and nonlinear structural control. Neu-
ro—controllers are trained with the aid of the emulator neural networks. The emulator neural network
is trained to learn the transfer function between the actuator signal and the sensor reading and it uses
that past values of these quantities to predict the future values of the sensor readings. In this paper,
we apply the previously developed neuro—control method in the benchmark problem of the active
tendon system. The emulator neural network is developed and trained using the evaluation model
given in the benchmark problem which is considered to be the true representation of the active tendon
system. However, areduced order model has been developed and used, along with the emulator neural
network, to train the neuro—controller. The evaluation model represents the three story steel frame
structure, including the actuator dynamics. The absolute acceleration of the first floor and the actua-
tor piston displacement are used as feedback. Three neuro—controllers, with different control crite-
ria, have been developed and their performances have been evaluated with the prescribed perfor-
mances indexes. The robustness of the neuro—controllers in the presence of some severe

uncertainties, has also been evaluated.

Introduction

Extensive research in the active control of civil engineering structures over the past few years

have resulted in various algorithms, strategies and devices'2. Most of these control methods require
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an accurate identification technique that can construct a precise mathematical model for the dynamics
of the controlled system. Therefore, these methods can be called model—based control methods or
mathematically formulated methods. On the other hand, control methods which acquire their capa-
bilities through learning and adaptation, such as neuro—controllers and neuro—fuzzy—controllers,
can be considered non—model—based methods or intelligent methods or adaptive methods. In spite
of the remarkable developments in the field of structural control, no direct comparative study have
been made between various proposed control methods. In this paper the neural network based struc-
tural control method is evaluated, as part of a comparative study between the structural control meth-

ods initiated by the Structural Control Committee of ASCE.

Structural control methods, utilizing the learning capabilities of neural network have been de-
veloped by Ghaboussi and his co—workers. A neuro—control method based on the inverse transfer
function was developed and applied in an experimental study of the actuator dynamics and delay com-
pensation (Nikzad, Ghaboussi and Paul 1¢). A neuro—control method which utilizes an emulator neu-
ral network (neuro—identifier) in its training, was developed and applied in /inear and nonlinear struc-
tural control (Ghaboussi’; Joghataie and Ghaboussi!'3-14; Ghaboussi and Joghataie!l; Ghaboussi and
Bani—Hani®; Bani—Hani and GhaboussiZ). A similar method has been proposed by Chen et. al.?.
Unlike the conventional control algorithms where the control task is explicitly formulated, in the neu-
ral network based structural control methods the neuro—controller learns the control task. The neu-
ro—controller acquires the knowledge of structural control from a set of training cases and stores that
knowledge in its connection weights. One of the attractions of neural networks is that they are capable
of learning complex nonlinear relationships. It is for this reason that neural network based control

methods are equally effective in nonlinear as well as in linear control problems.

In this study, an emulator neural network and three neuro—controllers, based on different
control criteria, were developed and trained using the evaluation model described in the SIMU-
LINK2! program provided for the benchmark problem. The effectiveness of the trained neuro—con-
trollers have been evaluated through two sets of criteria; the root mean squares (rms) of the responses
of the structure when it is subjected to excitation of a stationary random process with a spectral density
function defined by the Kanai—Tajimi spectrum; and, the peak responses when the structure is sub-

jected to the compressed 1940 El Centro NS earthquake record and the compressed 1968 Hachinohe



NS earthquake record. Finally, a study of the robustness of the neuro—controllers has been conducted

and reported.

Neuro—Control Method

Neuro—controller is a neural network which replaces the control algorithm in the mathemati-
cally formulated control methods. A typical neuro—controller is shown in Figure 1. Neuro—control-
lers can either be implemented in hardware or simulated in software, in the latter case, the neuro—
controller is in the form of a software, residing in the control computer. Similar to the other control
algorithms, the neuro—controller receives the feedback signal from the sensor (or sensors) at its input
layer and issues an appropriate signal to the actuator from its output layer. In the software imple-
mentation of the neuro—controller, the sensor data is received at discrete time intervals, referred to
as the sampling periods, 7;. The output of the neuro—controller is also sent to the actuator at the same
discrete sampling periods. In addition to the latest sensor reading, the input to the neuro—controller
also consists of the history of both the sensor readings and the actuator ram displacement, at several
previous sampling periods. In the present implementation of the neuro—controller, we have used two
sensors and one actuator. The sensors consist of an accelerometer measuring the horizontal absolute
acceleration at the first floor, X, and a rigidly mounted LVDT measuring the actuator piston dis-

placement, Xp.

The emulator neural network must be developed and trained before training of the neuro—
controller. The emulator neural network learns the transfer function between the actuator signal (the
signal going from the computer, where the control algorithm resides, to the actuator) and the output
of the sensor measuring the response of the structure. The emulator neural network used in this study
is shown in Figure 2. This transfer function includes the knowledge of the structural behavior, as well
as the knowledge of the actuator dynamics. In previous studies, Joghataie and Ghaboussi!3 and Gha-
boussi and Joghataiel! have developed and used a coupled model of the structure/actuator system.
Similar coupled model of the structure/actuator system has been incorporated in preparing the evalua-
tion model of the benchmark problem (Dyke et. al.). In addition to providing a path for training of

neuro—controller, the emulator neural network also allows the forecasting of the response of the



structure a short time period into the future, so that the control may be based on a time—averaged

criterion.

In a digital control setting, the neuro—controller learns a relationship that generally can be
described in the following manner. Consider a controlled structure subjected to a load vector p and
actuator signal vector u and let y and z be the vector of sensor readings and output vector, respectively.
The relationship that the neuro—controller learns must exist, otherwise the training process will not
converge. We assume that the following function defining the future value of the actuator signal, sub-

ject to some constraint, does exist.

U1 = Jne (Vi Yicrseoos Yices Ups Wietsooos Upims Pro Pictse+os Pien ) (1)
subjected to fe (Zk+1; Zk42 0%k +p ) < €

Note that the arguments of the function include a portion of the past history of the senor readings,
actuator signal and loading. The constraint equation is a function of the future values of the output
vector. The main parameters of this function are the extent of the past digital values of the arguments
¢, m,n and p. Such a relationship would always exist for sufficiently large values of these parameters.
These parameters are in general related to the degree of nonlinearity of underlying process repre-
sented by the function. Currently, there are no rigorous methods of determining these parameters.
It is important to note that the function in Eq (1), which must be learned by the neuro—controller also
includes the effects of actuator dynamic, actuator saturation, time delays and the sampling period.
It is, therefore, a highly nonlinear function. In designing neuro—controllers, the values of the parame-

ters €, m, n and p are determined by trial and error.

The emulator neural network also learns a relationship represented by the following equation.

X1 =Je (Xpo Xp_ppeees Xjpo Upyps Ups Uppseens Up ) (2)

Note that this function relates the sensor readings at k+1 to the actuator signal at k+1 and a portion
of the history of the sensor readings and the actuator signal. It is assumed that this relationship
uniquely exists for sufficiently large values of the parameters r and s. This equation represents the
transfer function between the actuator signal and the sensor readings. Even if the structure itself re-

mains linear, the effects of the actuator dynamics, actuator saturation and the sampling period, which



are also included, make this function nonlinear. Again, values of the parameters, r and s depend on

the degree of nonlinearity of the system.

The neuro—controller and the emulator neural network learn the relationships represented
by Egs (1) and (2). However, neural network reprehension is not exactly the same as the functions

they learn. For this reason we use a different symbol to represent the trained neural networks.
Uepr = NNue (Vio Yicr oo Yicor Wio Wietsoos Ugoyy Pio Prct o> Picn ) (3)

X1 = NN, (xk, Xp goeees Xpps Upyqs Upy Up 15eees uk_s) (4)

Whereas, the mathematical functions are exact and universally true, the neural networks approximate
these underlying functions over a limited range of interest. The uniqueness requirements for the neu-
ral networks are far more relaxed than for mathematical functions. For the neural network training
to be successful, the underlying function must exist but need not be strictly unique. Moreover, even
if the underlying function uniquely exists, the neural network architecture is not unique; more than
one neural network can learn the same underlying function to within a given degree of accuracy over

a limited range.

In training of any neural network, a set of training cases, consisting of input/output pairs, are
needed. The training cases for the emulator neural network are generated either through numerical
simulation ( the evaluation model and the SIMULINK?2! program in our case) or in an experimental
setting by sending signals to the actuator and recording the sensor outputs. The same procedure can
not be used for generating training cases for the neuro—controller, since the correct values of the out-
put are not known. The purpose of the emulator neural network is to provide a path for back—propa-
gation of the errors in training of the neuro—controller. The procedure for training of the neuro—con-

troller with the aid of the emulator neural network is schematically shown in Figure 3.

The neural network training method used in this study, as well as the previous studies by Gha-
boussi and his co—workers, is an adaptive architecture determination method, which was originally
developed in 1990 (Ghaboussi, Garrett and Wu -19; Wu24) and, has since been modified and improved
(Joghataie, Ghaboussi and Wu 13). This method, combines the ”Quickprop” training algorithm pro-

posed by Fahlman® and the dynamic node generation method proposed by Ash!l. The essentials of



the training method used in this study has been described in Joghataie, Ghaboussi and Wu 5. The
training process starts with a small part of the training cases and small number of nodes in the hidden
layers (not less than two nodes). As the training proceeds, more training cases are added and the rate
of learning is monitored. When the rate of learning falls below a certain value, which indicates that
the network is approaching its capacity, one new node is added to each hidden layer. The training is
continued for a time with the old connection weights frozen, so that the new connection weights can
learn part of the knowledge which was not learned by the old connection weights. Subsequently, the
old connection weights are unfrozen and the training continues with all the connection weights. This

process is continued until all the neural network learn all the training cases.

The adaptive training method which was briefly described in the previous paragraph, obvious-
ly has many parameters, such as: how to divide the training cases into smaller packets; when to add
a new packet of training cases; why add one node at a time to the hidden layers instead of two or more
nodes; how long should the old connection weight be frozen, etc. As in many other aspects of the neu-
ral networks, there are no unique answers to these questions. Our experience has shown that the over-
all training of the neural networks and the performance of the trained networks are, to a great extent,
insensitive to these parameters. We have developed a set a empirical rules which work for these class
of problems. Some of these rules have been described in Joghataie, Ghaboussi and Wu 15 However,

the relative effectiveness of these rules may be problem dependent.

Benchmark Problem, Active Tendon System

The system considered in this study is a 1:4 scale model of a three story building considered
in Chung et. al 4, that has become a standard model for structural control problems. Several experi-
ments have been performed on this model at NCEER at SUNY —Buffalo. A similar system has been
built in the Department of Civil Engineering at the University of Illinois at Urbana Champaign by
Ghaboussi and his co—workers, for testing and evaluating the capabilities of the neuro—controllers
in linear and nonlinear structural control. Control system consists of a hydraulic control actuator and
a tendon/pulley system. The frame has a total mass of 2,950 kg, distributed evenly among the three
floors, and a height of 254 cm. The structure has three distinct, lightly-damped modes with the natural
frequency values of 2.33 Hz, 7.37 Hz, and 12.24 Hz, and damping ratios of 0.6%, 0.7%, and 0.4%. The



structure was fully monitored, but the only practical measurements that can be used in the control

feedback are the accelerations and the actuator displacements.

Mathematical simulation (Evaluation Model)

The evaluation model is considered to be the true mathematical model of the control system
considering the interaction among all of its components (structure, actuator, sensors and tendons).
However, the model representation is assumed to be accurate up to 50 Hz. The evaluation model de-
scribed here, is the same model provided for the benchmark problem. The model has 20 states and

can be described mathematically as follow .

X() = A Xx(t) + B u(t) + E Xg (5)
y(t) = Cy x(t) + Dy u(t) + Fy Xg + v(t) (6)
z(t) = C, x(t) + Dz u(t) + F; Xg (7)

Where, x(t) = the 20 dimensional state space vector, u(t) = the single actuator signal, Xg =
the horizontal ground acceleration, v(t) = the measurement noise vector,
Y(t) = [ XpXa1, X0 Xa3, o Xg ]T is 6 dimensional states observation vector (sensors readings),
and z(t) = [ Xy, Xy, X3, Xp, Xi, Xo, Xz, Xp,Xgp, Ko, X3, f ]T is the output vector of the sys-
tem that can be regulated (12 states), and A, B, E, C, Dy, Fy, C,, D, and F, are the appropriate matrices.
This evaluation model has been used in training the emulator and in the evaluation of the neuro—con-
trollers. However, the neuro—controller has been designed using a reduced order model, that has been
developed with a 12 dimensional state space vector (x €, x; << 12y as required by the benchmark prob-
lem specifications, although neuro—controllers can be easily trained on the evaluation model itself

and they do not require a reduced order model.

The emulator neural network has some advantages over the classical identification methods;
it can be trained with the measured data during an experiment or from the recorded time histories,
without requiring any mathematical formulation. As a result, we can use the evaluation model with

its 20 dimensional state space vector to train the emulator neural network, assuming that the evalua-



tion model represents the actual structure. The emulator neural network can be described in the fol-
lowing form.
Xy = NNg ( X yeeny X y U s, Ucq, U ) 8
alk e alk—l alk_5 k-2 k-1 k ( )

Where, X,; and Uy are the first floor absolute acceleration and the control signal at t=kT,. Obviously
k

the emulator can predict the response of the structure from the history of the responses, and the cur-
rent signal and a portion of the past history of the signal. On the other hand the neuro—controller,
is trained using the reduced order model and the emulator neural network. The 12 state reduced order
model has been developed using the balanced model truncation technique with the tools found in the
MATLAB?2 control toolbox. Although the neuro—controller is trained on the reduced order model,
when the trained neuro—controller is used it receives its feedback from the actual structure (evalua-
tion model). The neuro—controller can be written in the following form.

U, = NNpc ( Xalk—l _ Xalk—s’ X % %, ) )

Where, X5, | Xpy are the first floor absolute acceleration and the actuator displacement at t=kT.
k

The simulation of the system dynamics was done using the SIMULINK?! software with the following
simulation parameters: sampling time period 7; = 0.001 sec.; control loop time delay 7 = 200 psec;
integration time step dt=0.0001 sec.. The A/D, D/A converters on the digital control have a 12 bit
precision and a span of 4= 3 V, which gives a resolution of ~ 1.5 mV. These values have been stated

explicitly in the benchmark problem.

Performance indexes, and the evaluations criteria

Some common evaluation criteria have been selected, to be used in the benchmark problem,

so the comparison can be made. These criteria are divided into two categories.

Performance criteria based on the rms of the responses
The first set of performance criteria, are the values of the root mean squares (rms) of the struc-
tural responses when the system is subjected to a stationary random process with the spectral density

function defined by the Kanai—Tajimi spectrum.
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Where it is assumed that Wy and g vary within the ranges of: 8 rad/s << ng 50rad/sand 0.3 < ¢ gg

0.75. The spectral intensify is chosen such that the rms of the ground motion is constant and has a value

of 0.034 g. The following performance indexes will to be evaluated and reported.
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Where, 04 = the rms inter—story drift value for the ith floor, O Ko = the rms value for the absolute
|

acceleration of the ith floor, 0 Xp = the rms value for the actuator displacements, O Xp = the rms value

for the actuator velocity, 0 = the rms value for the actuator force, and W = the total structure weight

( =289kN). The maximum rms displacement for the third floor of the uncontrolled case were found

to be O'x,, = 2.34 cm, the maximum uncontrolled third floor velocity O Xao = 33.3 cm/sec, and the max-

imum uncontrolled third floor absolute acceleration Oy ™ 0.485 g. These values occur when
as0

Wg:14.5 rad/s and g=0.3. Three other hard constraints were imposed for the neuro—controller: the



rms of the control signal Oy << 1.0 volt; the rms of the control force 0 < 4.0 kN; and, the rms of

the actuator displacement O a < 1.0cm.

Performance criteria based on the peak responses
The second set of performance criteria are based on the peak responses of the controlled sys-
tem, when the system is subjected to two compressed earthquake records; the 1940 El Centro NS re-

cord and the 1968 Hachinohe NS record. The following performance indexes will be evaluated and

reported.
di| |d;| |
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H?%hlnohe( (1) X30' X3p" X3o (16)
El Centro
J, = max ax \Xal\ [Xel [ Xa3
"I'E?(g‘e'rr‘](t)rge t Xa30 Xaz0 Xazo (17)

8= max
Hachinohe

\Xp )
ax

18
El Centro t ( )

om0 {32) )
Hachinohe
El Centro (t) 30
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Where, 0, = the inter—story drift for the ih floor, X5; = absolute acceleration of the ith floor, Xp =

the actuator piston displacement, Xp = the actuator piston velocity, f = the actuator force, and W =

the total structure weight ( = 289 kN ). For the uncontrolled system subjected to El Centro Earth-

quake we have the following : maximum displacement at the third floor X3,= 6.45 cm; maximum ve-
locity at the thirdX3o= 99.9 cmy/sec; and, maximum absolute acceleration at the third floor

X3,=1.57g. Similarly when the system is subjected to Hachinohe earthquake record we have the fol-

10



lowing maxima: X3,=3.78 cm; X3,= 56.1 cm/sec; and, X3,= 0.778 g. The hard constraints imposed

on the neuro—controller were: the absolute maximum control signal should not exceed 3.0 volt; the
absolute maximum control force should not exceed 12.0 kN; and, the absolute maximum actuator dis-

placement should not exceed 3.0 cm.

Controller Design

The controller design using neural network methodology, has been developed and tested by
Ghaboussi and his co—workers in previous works, where two different methods were presented. A
neuro—controller based on the inverse transfer function was introduced and implemented exper-
imentally by, Nikzad, Ghaboussi and Paul'®. In a second method introduced by Ghaboussi and his
co—workers”11:2 also used in this study, they used an emulator neural network to train the neuro—
controller. The neuro—controller design in this method, can be divided into two parts: first the emula-
tor neural network is trained and evaluated; then, the neuro—controller is trained on line with the aid
of the emulator neural network. In this study one emulator neural network was developed and it was

used to develop three different neuro—controllers, each with a different control criterion.

Emulator neural network (neuro—identifier)

The emulator is the first neural network to be trained. The emulator learns to predict the re-
sponse of the structure from the immediate past history of the structural response. The emulator is
chosen to have two hidden layers. The input layer consists of eight nodes which represent: the absolute
acceleration of the first floor of the frame at the last five past sampling periods; the current actuator
signal and the actuator signals at the past two sampling periods. The single output node represents
the current absolute acceleration of the first floor. Figure 2 shows the architecture of the emulator
neural network as well as its method of training. The SIMULINK?! program, used in preparing the

training data for the emulator, as well as in evaluating its performance, is also shown in Figure 2.

The emulator neural network can be considered a black box which represents the transfer
function between the actuator signal and the sensor readings. Clearly, this transfer function includes
the structural behavior. Therefore, it can be stated that the emulator learns some part of the structural

behavior. However, the transfer function also includes the effects of the actuator dynamics and sam-
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pling period. The emulator learns to incorporate the effects of these important factors. The neuro—
controller also learns to compensate for the effects of the actuator dynamics, sampling period and the

control loop time delays when it is trained with the aid of the emulator neural network.

Training of the emulator neural network has been accomplished by using the SIMULINK 2!
program provided in the benchmark problem. Three analyses have been performed using the 20 state
evaluation model: in the first analysis the system was subjected to the compressed 1940 El Centro
earthquake NS record while the control force was turned off; in the second analysis the system was
subjected to random white noise actuator signal with no earthquake input; finally, in the third analysis
the system was subjected to a combination of the earthquake ground motion and the white noise actua-
tor signal. A 10.0 seconds portion of the results from three analyses was used to generate a total of
30,000 training patterns for the emulator neural networks. Figure 2 shows the SIMULINK 2! model
used in preparing the training data for the emulator neural networks. The same SIMULINK 2! model
was also used in evaluating the performance of the trained emulator by adding the neural network

block.

The performance of the emulator neural network was evaluated by comparing its response
with the results of the analysis by the SIMULINK 2! program using the 20 state evaluation model. This
evaluation was performed for three different cases: (1) 100 seconds period of white noise actuator
command; (2) 100% of 1940 El Centro earthquake record; (3) 100% of 1968 Hachinohe earthquake
record. The results are shown in Figure 4. Clearly, the emulator neural network has been able to
learn the transfer function from the control command to the first floor acceleration very well, and to

reproduce the structural response under different excitations very accurately.

Neuro—controller

The methodology for the training of the neuro—controller used is in this study is also described
in Bani—Hani and Ghaboussi?. The method is based on using the emulator neural network on—line
to develop the training data set for the controller. The procedure for training of the neuro—control-
lers is shown in Figure 3. A random control signal is sent to the actuator, while the structure is sub-
jected to the base motion. The structural response at one sampling period is collected and sent to the

box labeled the control criterion. Simultaneously, the control signal is fed to the emulator neural net-
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work and its output is also sent to the box labeled the control criterion. In the control criterion box,
the control error is determined and backpropagated through the emulator neural network and
through the neuro—controller. Only the connection weights of the neuro—controller are modified.
This process is repeated until the control criterion is satisfied and the control error is reduced to below

a specified tolerance.

Mathematically, the process of backpropagating the control error through the emulator neu-
ral network, can be approached in different ways. Ghaboussi and Joghataie!! used an iterative loop
for calculating the control signal which satisfies the control criterion. They first computed the Jaco-
bian, representing the sensitivity of the acceleration of the first floor with respect to the actuator sig-
nal. Then, they used the inverse of the Jacobian to calculate a correction for the actuator signal. When
this process is applied iteratively, it leads to a control signal which will either satisfy the control criteri-
on, or will cause the actuator saturation. Chen et al3, made use of the internal architecture of the emu-
lator. They backpropagated the control error through the emulator to determine the differential ac-
tuator signal error at the input of the emulator neural network. This scheme is repeated continuously,

until the control criterion is satisfied for every sampling period or the actuator reaches saturation.

In this study, we use a method similar to the one used in Ghaboussi and Joghataie!l. It can
be described as a search method. For each time step, we search for the actuator signal which satisfies
the control criterion. This search is conducted by alternately varying the value of the actuator signal,u;,
j =1, .., n, between zero and its limits up,x and uy, ( —3 and 3 volt in our case) by increments of Au;

The total number of increments n is determined by the following equation.

+ .
0= [lumaxlAu|umzn|:| (21)

When j =0 the case is called the uncontrolled reference case. The training set for the neuro—controller

at each time step is obtained by satisfying the control criterion.

For each actuator signal increment, the emulator neural network is used to predict the struc-

tural response at m future time steps. The actuator signal u;is assumed to remain constant over the

next m time steps while the predicted structural response X gj' ,1=1,...,m is determined using the emu-
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lator neural network. The control criterion is then based on a time—averaged value of the structural
response. However, since the reliability of the emulator predicted structural response deteriorates
with elapsed time, a weight function is assigned to each predicted response value. The weight function,

called the importance function and it is a decreasing function of time.

Control Criteria

Three neuro—controllers have been designed. The neuro—controller A has been designed
with a control criterion based on the reduction of the predicted integrated relative displacements of
the first floor. Neuro—controller B has been designed with a control criterion based on the reduction
of the the first floor acceleration. Finally, neuro—controller C has been designed with a control crite-
rion based on the simultaneous reduction of the first floor relative displacements and first floor accel-

eration.

For neuro—controller A, the predicted absolute acceleration of the first floor is integrated
twice to determine the relative displacement, using Wilson’s © method (Wilson et. al.23). Wilson’s
© method, uses the following relations between the accelerations, velocities and displacements at two

successive time steps,

i il i i1 Sl
x4 —xlj_ + Clel, +C2x1j +C3(xa1j—xg)

/ (22)
#io= Cydri + Csxf! + Coliq -y ) (23)
xﬁzlj = G dx i1j + Csxil;l + Gy (¥ 2_11 - i)t X 24)

where i indicates the predicted time step and j is the current actuator signal increment step and, Cy
through Cg are functions of integration constant © > 1.4 and the integration time step At. By rear-
ranging Eqgs. (22),(23), and (24), the current values of the relative displacement and the relative veloc-
ity of the first floor can be determined in terms of the current value of the absolute acceleration, and
the values of the relative displacement, relative velocity and relative acceleration at the previous time

step.

Assuming that the predicted accelerations are reasonably accurate, the relative displacement can be

estimated for several future time steps and used in the control criterion for neuro—controller A.
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An equivalent first floor relative displacement )_(J is computed by using the appropriate im-

portance function W;, and the displacements integrated from the predicted accelerations.

- ,
Zl Xilj | *W;
X =15 > (25)
2 W
L i=0 J

The average reference value for the uncontrolled case is )_(R = )_(0 * Cyp » for j= 0, where Cy, <

1.0 is a reduction factor. The control signal is chosen to satisfy the following control criterion:

X = Xg and Yj < €4, where € is the control tolerance. If this criterion can not be met, then

the control signal is chosen to minimize 71- . The numerical values of the parameters used in the con-

trol criterion for training of the neuro—controller A are: m=4, Au=0.001 volt, n=6000, &;=0.2 cm,

Cio=0.9 and the importance function is defined by the following equation.

Wi = 15— ( IFnl ) i=1,...,m (26)

For the neuro—controller B, no integration was necessary since the control criterion is based

on the reduction of the first floor absolute acceleration. An equivalent first floor acceleration Xj

has been estimated with appropriate importance function W;.

o :
Zl Xllaj |*Wi
X = =5 - 27)
> W,
L i=0 J

The average reference value for the uncontrolled case is )?R = 5_(0 * Cao, for j= 0, and C,, < 1.0.

Similarly, the control criterion is chosen such that the control signal satisfies the following :

X | = Xgand X | = €a where €4is the control tolerance. If this criterion can not be met, then the

control signal is chosen to minimize X i .The numerical values of the parameters used in the control
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criterion for training of the neuro—controller B are: m=4, Au=0.001 volt, n=6000, g, =0.25 g,

Cu0=0.95, and the importance function W is defined by Eq (26), same as in controller A.

Finally, neuro—controller C, was trained with a control criterion based on the simultaneous
reduction of the first floor absolute acceleration and first floor relative displacement. Obviously, this
criterion is a combinations of the control criteria for the neuro—controllers A and B. However, the

control tolerances &; and g, were chosen in such a way that more emphasis is placed on the reduction
of the first floor acceleration. An equivalent first floor acceleration Xj and an equivalent first floor

relative displacement )_(J , were computed using appropriate importance functions and Eqs (25) and
(27).

The numerical values of the parameters used in the control criterion for training of the neuro—con-
troller C are: m=4, Au=0.001 volt, n=6000, &;=0.5 cm, Cy, =1.0,&,=0.25 g, C,, =.90, and W; the same
as in Eq (26).

The three neuro—controllers A, B and C were trained using a computer program simulating
the methodology shown in Figure 3. The design model for these controllers was a 12 states, reduced
order model, which has been developed from the evaluation model, using the balanced model trunca-
tion technique, available in the MATLAB 22 control toolbox. The reduced order model can be de-

scribed by the following state space equations :

Yr(t) = Cy, X (t) + Dy, u(t) + Fy, Xg + V(1) (29)

Where X;(t) is 12 state space vector, and Y((t) is a 2 state vector of the required measurements for
the controller design, y((t) = [ Xp, Xyl T. Figure 5, shows a comparison between the responses of
evaluation model and the reduced order model in both time domain and frequency domain. It appears
that the reduced order model has retained the essence of the original model without significant loss
of generalization. In the simulated computer program for the controllers design, both the reduced or-
der model and the emulator neural network were used to develop training cases for the three neuro—

controllers. In training the neuro—controllers a 50% amplitude of the compressed 1940 El Centro
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earthquake record was used for a duration of 10 seconds. This generated 10,000 training cases for each
neuro—controller. It is interesting to note that, as mentioned earlier, adaptive architecture deter-
mination was used and three neuro—controller ended up with different number of node in their hid-
den layers, adaptively determined during the training process. Neuro—controller A ended the train-
ing process with 10 nodes in each of its two hidden layers; neuro—controller B with 7 nodes in each
of its two hidden layers; and, neuro—controller C with 6 nodes in each of its two hidden layers. The
final number of nodes in the hidden layers in the adaptive architecture determination in somehow re-

lated to the degree of difficulty in learning of the information in the training data set.

Numerical Results

The three neuro—-controllers have been evaluated in two stages. In the first stage, the perfor-
mance of the neuro—controllers were evaluated using the evaluation criteria in Eqs (11) through (20),
as prescribed in the benchmark problem. In the second stage, we study the robustness of the trained

neuro—controller by evaluating their performance under severe uncertainties.

The evaluation indexes are: the root mean squares of the controlled responses when the struc-
ture is subjected to a stationary random process with the PSD function defined by the Kanai—Tajimi
spectrum; and, the peak controlled responses when the structure is subjected to the compressed El
Centro and Hachinohe earthquake records. The neuro—controllers A, B and C, which were trained
on 50% amplitude of El Centro earthquake with three different control criteria, were able to control
the structure when it is subjected to a more severe earthquake (100% amplitude of El Centro), as well
as a different earthquake than the one they were trained on (Hachinohe). Table 1 summarizes the
computed performance indexes for the three neuro—controllers, for the three earthquake excitations.
Figures 6 and 7 show the comparison between the controlled and the uncontrolled responses for the
third floor absolute acceleration and the third floor relative displacement, for neuro—controller C.

Figure 8 shows the same comparisons in the frequency domain.

Clearly, all three neuro—controllers appear effective in controlling the response of the struc-
ture. However, comparison of the J;, J,, Js and J; values reveal that neuro—controller C is somewhat
more effective than neuro—controllers A and B. It is recalled that neuro—controller C was trained

with a control criterion which included both the control criteria used in training neuro—controller A
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(reduction of first floor relative displacement) and neuro—controller B (reduction of first floor abso-
lute acceleration), with more emphasis placed on the latter criterion. Consequently, we choose the
neuro—controller C as our candidate controller, with the performances indexes ( 0.1454, 0.3121,
0.0409, 0.0360, 0.0087, 0.3011, 0.7731, 0.0708, 0.0708, 0.0374 ). Figure 9 shows the transfer functions
between the ground acceleration and the third floor acceleration and displacement, for the controlled
(neuro—controller C) and the uncontrolled system. These transfer functions have been computed us-
ing the response of the system when it was subjected to 300 seconds of broadband excitation with the

K—T spectral density.

The robustness of the neuro—controller C is evaluated by computing the uncontrolled and
controlled responses of the structure for three different types of uncertainties, introduced by modify-
ing some parameters of the system. These parameter modification are considered unmodelled since
the structure was controlled with the original neuro—controller C, trained on the unmodified struc-
ture. The first uncertainty represented a type of mal—function which caused a ten fold increase in the
time delay. The second uncertainty represented a modification of the structural parameters, possibly
caused by damage. It was modeled by modifying the state space parameters of the evaluation model
by &= 15%. The third uncertainty simulated the case of a partial sensor failure and, it was modeled
by adding a random error of = 0.3 volts to the sensor feedback. The performance of the neuro—con-
troller C under these unmodelled parameter modifications is summarized in Table 2. It is clear that
the neuro—controller was still able to perform well, even though the performance is somewhat de-
graded from that of the perfectly modelled case. Figure 10 shows the responses of the system with

the three different cases of parameter modifications.

Concluding Remarks

Three neuro—controllers were designed, trained and evaluated in this study. The results of
this study show that a neural network can be successfully implemented in structural control. Neuro—
controllers have many advantages over the mathematically formulated control algorithms. While
learning to control the structure, they also learn to compensate for the time delays and the actuator
dynamics and, they learn to account for the actuator saturation. We have demonstrated the robustness

of the neuro—controllers with results that show their effectiveness, without significant degradations
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in their performance, under uncertainties represented by unmodelled parameter changes. This study
has also demonstrated the effectiveness of the neuro—controllers with minimal feedback, which in this
case included the first floor absolute acceleration and the actuator displacement. Because of their
inherent capability to learn complex nonlinear relationships, neural networks are also effective in
nonlinear control problems. In summary, neuro—controllers are effective in structural control and
have many advantages over mathematically formulated control algorithms. The performance of neu-
ro—controllers will soon be experimentally verified by the authors in a planned experiment on the

three story model with the same control system as was used in this study.

The SIMULINK programs which contain the connection weights for the emulator neural net-
work and the three neuro—controllers are available on request from Prof. Jamshid Ghaboussi via e—

mail address jghabous@uiuc.edu.
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Controller A :

( Reduction of the first floor relative disablement criterion )

Controller C:

RI_\/IS_Responses J; J N3 Js N3 (o Ox, Ot
criteria (volt) [ (cm) (KN)
Broadband (K-T)0.1871 |0.3867 [0.0396 |0.0416 |0.0090 |[0.7020 |0.0927 [2.6021
Peak Responses \]6 \]7 \13 \]9 Jio Unax Xpmax fmax
criteria (volts)| (cm) | (KN)
El Centro 0.2743 |0.7127 [0.0674 |0.2540 |0.0379 [3.9342 |0.4345 [10.960
Hachinohe 0.3373 10.8460 [0.0721 |0.1014 |0.0238 |2.0996 |0.2725 [6.8805
Controller B: (Reduction of the first floor absolute acceleration criterion )

RMS Responsés J, J N3 Ja N3 (o8 Ox, Ot
criteria (volt) | (cm) | (kN)
Broadband (K-T)[0.1541 |0.3302 [0.0366 |0.0346 |0.0089 |0.6791 |0.0856 |2.5944
Peak Responsgs J, J J Js Jo | Unax | Xomax | fmax
criteria (volts) | (cm) | (kN)
El Centro 0.2384 |0.5148 [0.0626 |0.0804 |0.0364 |2.9616 |0.4035 |10.524
Hachinohe 0.3103 |0.8052 [0.0622 |0.0674 |0.0279 |1.8234 |0.2352 {8.0771

( Reduction of the first floor absolute acceleration and relative displacement criter

RMS Respons¢
criteria

S J,

J

N

Ja

N3

Ou
(volt)

Ox
(cm)

Ot
(kN)

Broadband (K-T)

0.1454

0.3121

0.0409

0.0360

0.0087

0.7642

0.0958

2.5207

Peak Responsst
Criteria

S J;

J

N

J

Jio

umax

(volts)

Xpmax

(cm)

fm ax

(kN)

El Centro

0.2319

0.5112

0.0519

0.0569

0.0374

2.6844

0.3347

10.810

Hachinohe

0.3011

0.7731

0.0708

0.0708

0.0273

2.1203

0.2677

7.8783

Table 1. Evaluation Performance Indexes for the Three Designed Controllers, The RMS performance

and contraint values were evaluated at the nominal design point wg=14.5, zg=.3.
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Peak Responses of the controlled ( neuro—controller C ) system
subjected to El Centro Earthquake with different severe cases of
uncertainties (assessments of robustness and stability)

Case Definition

Xal

Xa2

Xa3

sensors readings of
4 0.3 volts.

Xi X2 X3
(ecm) | (em) | (cm) (g (g (g
uncontrolled system 2.0170 4.9737 6.5653 1.0809 1.2744 1.5631
evaluation model without |1.0920 2.3080 3.0125 0.6608 0.6267 0.7760
any uncertainties
Case 1: Time delay was 1.2125 2.7006 3.6537 0.7116 0.7244 0.9131
increased 10 times
Case 2: Uncertainties in 1.3643 3.3312 4.3643 0.7412 0.7584 0.9895
the model + 15%
Case 3: Uncertainties in 1.2147 2.4354 3.3061 0.9378 0.8232 0.8505

Table 2. Comparisons between the peak responses of the controlled system and the controlled system

with some severe uncertainties.
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Computed Response using the Emulator Neural Network
==== Computed Response using thealuationmodel

10 T
m
o
)
o
2
=
o)
I
= i Based on 100 sec. white noise actuator commarEd
-100 S S S S ST T M —
0.0 25.0 50.0

a) The transfer function from the command signal to the first floor acceleration

=
N

P nj\vﬂ A !\j\ A a/\!\ A AA I\f\ [\
Y \/VV\I i V

time (sec)

o
o

First Floor Acceleration (g )
-
N

|

0.0 5.0

b) The structure is subjected to 100% of 1940 El centro NS earthquake record

o
&

o
o

05 1 1 1 1 | 1 1 1 1
0.0 time (sec) 5.0

c) The structure is subjected to 100% of 1968 Hachinohe NS earthquake record

First Floor Acceleration (g )

Figure 4. Comparison of the neural network emulator response and the computed first floor response

of the structure using the evaluation model in the SIMULINK program.
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structure is subjected to El Centro earthquake record, and Hachinohe earthquake record ( neuro—

controller)
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