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ABSTRACT: Recently developed quadratic stability and performance control tech-
niques are used to design controllers for the active mass driver (AMD) benchmark problem.
Several designs are obtained and analyzed to highlight the utility of the proposed technique.
Solution through the use of linear matrix inequalities is presented and extensions to systems
with modeling error, actuator/sensor malfunction and saturating controllers are discussed.

Simulation results indicate that the performance of the control techniques is quite remark-
able.

1 Introduction

In this paper, we apply the quadratic stability and performance technique to design dynamic
(full order) output feedback control laws. In the simplest form, this approach coincides with
the standard H, method, which has been used in a variety of civil engineering applica-
tions (see references [9,13,18,19] or reference [7] for use in u-synthesis, among others). The
connections between the quadratic stability framework and the H,, techniques were dis-
cussed, among many, in references [24,8,12]. The quadratic stability framework used here,
can be extended to address a variety of important considerations that are faced in full scale

implementations of active control technologies.

While there have been some experimental verifications??, a comprehensive evaluation of
the proposed control laws have not been available. The purpose of this paper is to develop
controllers for the Active Mass Driver (AMD) benchmark problem??, with its associated
constraints (e.g., magnitude of input) and suggested input records. The performance of the

controllers developed is demonstrated by the simulation results.

The benchmark problem provides several important challenges that are faced in large
scale implementations, including limits on the order of the compensator, the associated model
reduction and the resulting errors, digital implementation, sensors noise, actuator dynamic,
etc. Other issues, such as hardware reliability and actuator saturation for large earthquake

episodes, are among the remaining critical issues. The basic framework presented here can
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be used to address a variety of these critical issues, in a straightforward fashion. Such exten-
sions are briefly discussed in Section 2, along with a variety of preliminary and background
materials. In Section 3, detailed designs of the controllers are illustrated through numerical
simulations for the benchmark problem. The performance of the proposed controllers for the

AMD benchmark problem is also demonstrated in Section 3.



2 Preliminaries and Background

In this section, the basic notations and preliminary materials are presented, along with the
main approach used. The equations (inequalities) used in the construction of the controller
and the related main issues are listed, and some discussion on the extension to more difficult
cases is also provided. Simulation results and the related discussions are presented in the

next section.

2.1 Notation

Consider the design model used in Spencer, et al. (1997)

z,(t) = Az (t)+ Bru(t) + E. i,
z(t) = Cuz.(t) + Dyu(t) + ForZy (1)
yr(t) = Cyuz.(t) + Dyru(t) + Fyrdy + v,

where z. is the state of the reduced order system (i.e., design model), y, is the measurement
output vector, and z, is the controlled output vector containing regulated response; e.g.,
displacements, velocities and accelerations of the floors and actuator, as discussed in reference
[22]. Matrices Cyy, and C., relate the measured and regulated responses to the reduced-order

(10 states) state variables that are not physical quantities.

For clarity and to be consistent with the notations used in the robust control literature,

we use the standard state space representation of the form
i(t) = Aa(t)+ Bru(t) + Bau(t)
t

2
z(t) = Ciz(t) + Duw(t) + Dizu(t) (2)
y(t) = Caz(t) + Daw(t) + Dou(t)

The two representations above are interchangeable. Clearly, z(t) = z.(t), 2(t) = z.(t),
y(t) =u:(t), A= A,, B, = B, D12 =D,,, Doy = D, C; = C,,, and C, = Cyr. However,
the disturbance vector w of (2) contains both sensor noise and external disturbances (e.g.,
strong wind gust or ground acceleration). Therefore w = [z, vT|T, B; = [E, 0], Dy; = [D,, 0],
and Dy = [F, I].

The basic approach is to obtain a full order compensator of the form

T, Axz.+ Bey
{ v = Ceu.+ D.y (3)



such that the closed-loop system has desirable stability and performance characteristics. The
standard approach is to assume that Dy, = 0. Since in the benchmark problem a nonzero

value for this matrix is identified, a simple transformation of the form
§=y—Dnu

yields the following representation for the entire system (including compensator)

(1)
z(t)
y(t)

1l

Az(t) + Biw(t) + Boul(t)
Clil,‘(t) + Du’w(t) + Dmu(t) (4)
Cg.’r(t) + .Dgl’w(t)

Il

i‘c = f:iczc'f'Bcg (5)
v = Cuz.+ D,y

where

Ac = Ac + BCD22(I - DCD22)_ICC
Bc = Bc + BcD22(I - DcD22)—1Dc
C,= (I - D.Dy)™'C,, D, = (I — D.D3,)™'D...

Equations (4) and (5) are of the form that will be used in the algorithms presented herein.
Once A, B., C. and D, are calculated according to the procedures to be described below

(and summarized in Section 2.4), A,, B., C. and D, can be obtained via the the following

_Dc = DC(I + DgzDg)_l
Cc = (I~ DcDy)C. (6)
B. = B(I+ Dy(I — D.Dy3)" D!

Ac = Ac - BCDZZ(I - DcD22)—ICc .

After these matrices are obtained, they can be discretized and implemented according to
the procedures outlined in reference [22]. In many instances the compensator in (5) can
0) without any loss of generality. With such

be assumed to be strictly proper (i.e., D, =
toDC:Dczﬂ,Bczgc,C’c=C_'C=Ccand

an assumption, equation (6) simplifies
Ac = A, — B.DyC..

Finally, for a symmetric matrix X, the notation X > 0 (X < 0) means that X is a positive
(negative) definite matrix, which is equivalent to the statement that all of the eigenvalues of
X are strictly positive (negative). We can now discuss the basic approach and the algorithm

used to obtain the compensator.



2.2 The Basic Technique

The basic approach used here is the quadratic stability with performance framework. For
performance, we use guaranteed bounds on the induced L, norm of the appropriate transfer
function. Throughout this paper, instead of the ‘induced L, norm’, we use the equivalent
phrase of ‘L, gain’ of the system (since such a definition can also be applied in the presence
of time variations and nonlinearities). Using (4) and (5) for the system and the compensator,

the following closed-loop system is obtained

:bcl = Acl$c1+Bc1w (7)
z = Caza+ Dyw

where z is the state vector of the closed-loop system (the states of the design model plus

the compensator states)

T = z . A= A +;BZDC02 BZCYC . B, = Bl +_B2DC.D21
cd = mc ) cd = B002 Ac 3 el BCD21

and
Ca = (C1+ D12D.C; Dy2C.) , Dy = Dyy + D13D.Dy.

The main goal is to determine the compensator matrices A, B., C. , and D, so that
the closed-loop system has desirable stability and performance characteristics. Consistent
with the definitions used in references [11,24], we use the following definition for stability

and performance:

Definition 1: The system in (7) is said to be quadratically stable with L, gain (or energy
attenuation) of v if Ry = (y*I — DI Dy) > 0 and there exists a constant positive definite
matrix P such that

PAy+ ATP 4+ CECy + [PBy + CID)RF}PBy + CIDT < 0. (8)

Through the use of Lyapunov theory (with zZPz. as the Lyapunov function), it is
straightforward to show that if the system in (7) is quadratically stable (i.e., satisfies Def-
inition 1) with L, gain (or energy attenuation) of 4, it is uniformly asymptotically stable
and has L (or energy) gain - from w to z - of less than 4. By L, gain, it is meant that

o T

llzll. < ~llwllL,, where ||z][}, = f§° 2T(t) 2(t) dt. Thus, v is used as a measure of how the



disturbance w influences entries in the controlled output z (e.g., interstory drifts). The ob-
jective of the control design is to minimize this influence by reducing the value of 4 for the

closed-loop system.

Through the use of Schur complement formula®, equation (8) is equivalent to existence
of a positive definite P such that
PAcl + AZ;P PBCI CT

BIP —~1 DZTI, <0. (9)

Cu Da =1
Consequently, the control design is reduced to finding a positive definite matrix P and a
set of compensator matrices (A., B., C., and D) such that the inequality in (9) holds.
If successful, the closed-loop system will be stable with a guaranteed L, gain (or energy
attenuation) of less than 4. The smallest 4 for which (9) is satisfied will be denoted as the
minimum disturbance attenuation level, ¥min. Unfortunately, the unknown variables (i.e., P
and the compensator matrices) enter (9) nonlinearly (e.g., product of P and A.). Solving
for these unknowns, from (9), is a very difficult problem. Hence, the transformation of this

problem into a simpler and solvable formulation is presented in the next section.

2.3 Solution via LMIs

As mentioned earlier, the control design requires finding the appropriate compensator ma-
trices (i.e, A;, Be, C. and D.) in (5) and a positive definite matrix P such that (9) holds. In
the form presented in (9), the search for these matrices is difficult, due to the fact that the
unknown variables enter the inequality in a nonlinear fashion. It is well known®®, however,
the problem can be reformulated into a form that breaks the search for the unknown vari-
ables into two steps. In each of these steps, the unknown variables appear linearly and, as a
result, the search for these variables becomes a convex search for which a variety of powerful
numerical techniques are available. In the first step, a set of linear inequalities is obtained
from which the matrix P can be calculated, but do not contain the compensator matrices
explicitly. Once this step is completed, the second step involves another convex search, this
time for finding the compensator matrices (A., B,, C., and D.). The following is a brief

summary of the main steps in obtaining the compensator matrices.

The existences of a positive definite matrix P and compensator matrices, such that (9)
holds, is equivalent to the existence of a pair of positive definite matrices X > 0, and ¥ > 0

such that the following three linear matrix inequalities (LMIs) hold simultaneously?®
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AX + XAT XCT B

BT Ci1 X —yI Dy | By <0 (10)
B;‘r D{I -1
YA+ ATY YB, Cf
Cy By  —4I DI |CT<o0 (11)
Gy Dn —I
X I
( Iy ) >0 (12)

in which A, By, Cy and Dy, are given in (2) and
B=[Bf DY, 0, ,c=[C, Dy 0. (13)

In (10) and (11), the subscript ‘L’ denotes a maximum rank matrix that.spans the null
space of the transpose of a matrix. In other words, matrix By 1s any matrix such that the
matrix [B  B,] is square and invertible and BTB, = 0. In general, B, can be constructed
by using the singular value decomposition. Many software packages (e.g., MATLAB LMI
toolbox) are available to calculate such matrices. More details regarding the properties of

such matrices can be obtained from many references®*5,

The first step, i.e., the search for X and Y in (10)-(12), is a convex search since the
unknown variables enter the inequalities linearly (affinely). A variety of techniques are avail-
able for solving this problem, but the interior point techniques that were recently developed
have been gaining wide-spread acceptance as a fast, accurate and efficient approach. The
numerical results presented in this paper were all obtained with the MATLAB LMI toolbox®.
Note that the compensator matrices do not appear in these inequalities expliéitly (they will
be calculated in the second step). Also, note that the three LMIs have to be solved simulta-
neously, due to the coupling condition in (12). This last feature is somewhat different from
the H; problem, for example, where the separation principle allows sequentially solving the

full state and observer equations.

The guaranteed L gain (i.e., ) appears linearly in equations (10)-(12). As a result, ~
can be either set to a predetermined level, or minimized simultaneously with finding feasible
X and Y (i.e, find the minimum value of v for which (10)-(12) are feasible). Once Ymin
is known, the search for the corresponding X and Y is guaranteed to result in appropriate

matrices for any ¥ > Ymin. In most of the simulation results presented in Section 3, v is
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minimized in the search for X and Y. After matrices X and Y that satisfy (10)-(12) are

calculated, we construct a feasible P for (9) according to

S=X-Y"! (14)
and

p=(2 Ty (15

Once this P is known, the remaining variables (i.e., the compensator matrices A., B., C.,
and D.) in (9) appear linearly; i.e., (9) is now a linear matrix inequality in these remaining
unknown variables. Hence, the second step is to use (9) to determine the unknown matrices
A, BC, C., and Dc, which is another convex search. The unknown matrices can be solved
similar to the search for X and Y in (10)-(12) (e.g., through MATLAB LMI toolbox).

The lowest feasible value of v, denoted by Ymin, can be found in the first step; i.e.,
searching for X and Y, as mentioned earlier. In the second step; i.e., searching for the
compensator matrices, any value equal to or larger than 4, can be used. In our simulation
studies, instead of Ymin, We use Y = 4min + € in the second step, to reduce the potential

numerical problems.

2.4 Control Design Algorithm

The algorithm for obtaining the control law presented above can be summarized as follows

(1) Choose an initial controlled output z with appropriate weightings on critical quantities

(e.g., interstory drifts)

(ii) Obtain the corresponding Cy, Dy; and Day, by using the appropriate rows of C,,, D,,
and F,,

(iii) Use (10)-(12) to obtain X, Y and the minimum value of v, X.

(iv) Construct the P matrix according to (14)-(15)

(v) Use (9) to search for A, B, C, D., using P obtained in step (iv) and any v > Ymin
(vi) Obtain A, B, C., D, from (6)

(vii) Discretize and implement A., B,, C., D., according to reference [22]
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Steps (i) and (ii) require extraction of appropriate rows (and possibly multiplying some
rows by scaling constants) from the data provided for the benchmark problem (see (2) and (1)
and the related discussion). Steps (iv), (vi) and (vii) involve routine matrix manipulations.
Steps (iii) and (v) constitute the two convex searches that were discussed earlier. All the
simulation results shown in Section 3 are obtained through the use of MATLAB’s LMI-
toolbox. The dimension of matrixes X and Y is the same as the state matrix 4 (i.e., 10 x
10 in the benchmark problem). The dimension of the compensator matrix A, is also the same
as A since the procedure discussed here concerns the design of full order output feedback
control laws. The dimension of the rest of the compensator matrices is related to the number
of actuators and sensors used. Finally, an alternative approach in Step (iii) would be not to

minimize 7 and set v to any value larger than the minimum obtainable (i.e., step (iii) would
use (10)-(12) to obtain X, Y for some v ).

As discussed further below, the framework presented here can be used to address a vari-
ety of critical issues (e.g., hardware reliability /malfunction and saturation) simultaneously.
However, if no other considerations are taken into account (i.e., there is no uncertainty, no
multi-objective, no saturation), then the approach used here is equivalent to the basic H,,
technique. For example, satisfaction of the quadratic stability with L, gain of v is equiv-
alent to having an H. norm of less than v (for the transfer function from w to z; i.e.,
Cals] — Aa]™'Ba + D). The optimal H,, solution corresponds to the minimum value of 0%
obtained from the the three LMIs in (10)-(12). For the simulation results presented in this
paper, the basic quadratic stabilization (with performance) approach has been applied to
the AMD benchmark problem.

2.5 Extensions

Only the basic quadratic stabilizability with performance problem has been presented in this
paper, since we are concerned with the simulation studies for the performance of the AMD
benchmark problem. A variety of other issues, however, can be anticipated in practical
implementation that require careful considerations. In this subsection, we review three
important extensions; (i) modeling error, (ii) actuator/sensor malfunction or unreliability,

and (iii) actuator saturation.



2.5.1 Modeling Error

Due to inherent modeling errors involved in large civil engineering structures, the issue of
robustness of the controller performance to modeling errors is a natural concern. With
modeling errors, the approach presented above can be modified to obtain controllers that
are guaranteed to perform at a desirable level (i.e., a given 7). The state feedback design can
easily incorporate the modeling error and it involves a convex search (i.e., a search for two
matrices that satisfy a set of LMIs similar to (10)). However, the output feedback problem is
not in general convex and thus considerably harder to solve. With the framework presented
above, it has been shown how the number and location of sensors can be chosen such that the
problem can be make into two sequential convex problems'®. Also, reference [15], discusses
conditions under which observers can be obtained that recover the properties of a state
feedback control law, for the case of norm bounded uncertainty. Similar results!®!*5can be
used for the determination of type, number and location of sensors that simplifies the control

design process, when significant modeling error is present.

2.5.2 Actuator/Sensor Malfunction

A critical issue in the implementation of active control systems is the possible malfunction
failure) of hardware, such as actuators or sensors. Malfunction (or failure) of actuators or
sensors can be expressed in terms of the gain deviations (or variations) that can be quite
large during the start-up period. These variations could come from power fluctuations, non-
linearities, partial actuator failure or any type of variation that causes time varying gain

changes in the sensor or actuator signals.

Malfunction of actuators described above has been incorporated into the quadratic sta-
bility framework?,and it is founds that there is a natural tradeoff between performance and
the bounds on the malfunction or reliability. In principle, the gain deviation due to the mal-
function of actuators or sensors can be considered as modeling error (or robustness) problem,
hence it can be taken into account in the formulation described in Section 2.5.1 However,
because of the specific nature of the actuator malfunction, we have obtained stronger re-
sults. Among these are lower computational costs and the convexity of the search process

for controllers with a specific structure!-2.

10



2.5.3 Saturating Actuators

Another important issue is the actuator saturation. Due to the limited capacity of an
actuator, as well as the random nature of earthquake excitations, actuators may become
saturated, particularly under near-field earthquakes. Although one can design a controller
that will not saturate under the maximum credible earthquake, the resulting controller will
have a low gain matrix leading to a poor control performance for the design earthquake.
Since civil engineering structures are designed to be stable without control, most of the
control methodologies in the literature which are geared to stabilizing systems with actuator
saturation are of little use. Thus a controller that maintains its high performance under
unexpectedly strong earthquakes, by utilizing its full capacity is highly desirable.

The issue of actuator saturation can be incorporated in the quadratic stability framework

1617 This is accomplished by creating a multi-objective problem, to provide a

used here
desirable performance (i.e., L, gain) as well as using estimates for the ellipsoid of reachability.
The resulting problem will form a convex search for the state feedback problem, which under
mind assumptions (particularly for earthquake applications) is guaranteed to work with a
simple observer-based output feedback controller. As shown in references [16] and [17], the
multi-objective approach can be used to solve a problem that has the following features:
(i) it guarantees substantial improvement in performance, (ii) the level of performance is
explicitly related to the actuator saturation levels and the peak ground acceleration of the

design earthquake, and (iii) it operates at, or close to, peak actuator capacity.

3 Simulation Results
Before discussing the details of the simulation results, a few issues will be reviewed:

Strictly Proper vs. Proper Controller

In general, the approach outlined above yields a proper controller (i.e., D. is not typically
zero). However, as shown in reference [14], when the size of D; is small (as is the case
in the benchmark problem), this feedthrough term can be set to zero without any loss
of generality. Furthermore, in the last step of the design (i.e., the LMIs to obtain the
compensator matrices), matrix D, can be set to be zero (the search becomes that of finding
three matrices A., B, and C, such that (9) is satisfied). Such a compensator does not have

a direct feed from measurements to the control input, and thus reduces the effects of sensor
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Table 1: Peak Actuator Values for

- . . . " ae . . T
z2 =21 Ty T3 Ty T1 Ty T3 Ty L1 To T3 Tm)

Case | v | max(u) | max(z,) | max(Z.,)
Volts cm g
Al | 25 | 3.4395 | 11.1218 | 39.3446
A2 | 50 | 1.5145 | 5.4829 8.6906
A.3 | 100 | 1.45020 | 5.2560 7.8655

noise and simplifies the implementation step.

When this structure (i.e., D, = 0) is not explicitly enforced, the approach used here
results in nonzero D, which has entries that are several orders of magnitude smaller than
the rest of the compensator matrices. Keeping the same control output, z, and performance
bound, <, an interchange of proper and strictly proper compensators results in no noticeable

changes in any of the measured quantities.

Number of Measurements

All simulation results presented for the dynamic output feedback use the same output

measurements as in reference [22]; i.e.,
y=[&1 Z2 F3 Im] .

No discernible difference was observed when different combination of sensors were used (as
low as 2 sensors or as many as 6 - including the ground acceleration). By keeping the sensors

the same as in reference [22], comparisons become somewhat easier.

Ground Acceleration and Recovery of Full State Performance

The fact that using the ground acceleration measurement did not improve the controller
performance is not surprising. Due to the relatively small size of D;;, such a measurement
does not improve the performance of state feedback controllers (i.e., the full information case
is not better than the state feedback case). As a result, the low impact of ground acceleration

measurement was to be expected.

Simulation Results

The first step in the design is to choose an appropriate controlled output (i.e. z). Typi-

cally, a combination of undesirable quantities are incorporated in z (e.g., interstory drifts or
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floor accelerations). For simplicity, we first use the vector z as defined in reference [22] as

the control output; i.e.,
T _ e e e e e e
20 =1 T3 T3 Ty &1 Lo T3 T Ty T2 B3 Trm)-

Recall that this vector has all relative displacements, their derivatives, floor absolute accel-

erations, the displacement, velocity and the acceleration of the actuator mass as its entries.

With the controlled output z above, the open-loop Ymin = 274.89 is determined from
(10)-(12) by setting B, = 0 and Dy, = 0 (see step (iii) of the procedure in Section 2.4).
For the closed-loop system (B; # 0, D1y # 0), the minimum 7 is obtained from (10)-(12)
as Ymin = 24.04. The next step, step (iv), is to use ¥ = Ymin + 1 = 25 in (9) along with
P obtained in step (iii) to determine the compensator matrices. After the controller is
designed, the peak response quantities of the evaluation model?? are computed using the
El Centro earthquake input. Some results are shown in the first row of Table 1, denoted
by Case A.1. In Table 1, the peak control command, peak AMD mass displacement and
peak AMD mass acceleration are denoted by maz(u), maz(z,), and maz(%,,), respectively.
In reference [22], all three of these quantities are required to be constrained within certain
limits. The results in Table 1 for Case A.1 indicate that all three violate the constraints. As
a result, it is necessary to modulate the control effort and response quantities so that all of

the constraints are satisfied.

In the present formulation, there are two possible approaches to modulate the control
efforts vs the structural response. One approach is to manipulate the value of v used and
the other is to alter the controlled output z. Note that the quantities shown in Table 1 are
associated with the control effort, since maz(z,,) and maz(i,,) are related to the control
command u. Now, we consider the first approach by keeping the same z as before but
increasing the value of 7 above the minimum of 24.04 ( since an increase in 4 will reduce the
control effort or increase the structural response). Hence, values of v = 50 and 100 are used
in the procedure in Section 2.4 to determine the compensator matrices (For these cases, v
1s not minimized and it is set to 50 and 100, respectively, in both steps (ii1) and (v)). Such
controllers are denoted by Cases A.2 and A.3, respectively. Under El Centro earthquake,
the peak response quantities of the evaluation model for the cases A.2 and A.3 are shown
in Table 1. As observed from Table 1, increasing v leads to a very limited success, since
the constraints are still violated. Even if v is increased to 200, the constraint on T 18 still

violated.
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Table 2: Controlled Outputs and Minimum L, Gains

Case Controlled Output Open-loop | Closed-loop | Ratio
Tmin Tmin

A zZ = [(L'l To T3z Ty :bl .’i?g iiJ3 .’im Iil (.1:'2 1‘1.13 :i‘m]T 271.89 24.04 0.088

B |z =z, 3 x3 5T &1 T2 T3 5Ty, 3Ty T2 &3 103,]7 437.53 113.15 0.257

C | z2=[21 22 23 Ty T1 Ty T3 Ty T1 T2 T3 202, 3u]l 502.77 72.69 0.145

D ZT = [111 T I3 .’f)l If-‘_) ii)g .’i)m .’.L.'l 532 1.12'3 17$m ] 348.93 59.40 0.170

Consequently, we shall consider the second approach in which the controlled output z is
changed. Here, different z vectors will be used, referred to as Cases B-D in Table 2. For a
given z, the P matrix and ymin are determined from (10)-(12), as in Step (iii). Then, the
controller is obtained from (9) with the P matrix obtained above and v = ypmin + 1, as in
step (v). In Table 2, different cases correspond to different weighting used for the controlled
output z (from adding u to z, to heavily penalizing the acceleration and the displacement of
the AMD mass). The other entries in Table 2 show the 7, for open-loop and closed-loop
systems for each case. Note that the choice of z alters the open-loop Ymin as well as the
closed-100p Ymin. The last column in Table 2 denotes the ratio of the closed-1oop v,,in to the
open-loop Ymin.

While more details will be provided below, throughout the simulations it was observed
that the El Centro earthquake produced the larger peak actuator voltage, AMD mass dis-
placement and acceleration. Hachinohe earthquake, however, resulted in values that were
recorded in J6-J10 (since their corresponding values were always larger than those of the
El Centro). Also, as the tables below indicate, the acceleration of the AMD mass was the

critical constraint for these controllers.

Tables 3 and 4 present the results of simulations. Table 3 shows the performance indices
J1-J5 and o(u), when the system is subjected to stochastic earthquake with ¢, = 0.3 and
w,y = 37.3. Table 4 presents the performance indices J6-J10, and the peak values for actuator
- commands (in volts), displacement and acceleration of the AMD mass (in centimeters and
g’s respectively). This table corresponds to the El Centro and Hachinohe earthquake inputs.
Table 4 indicates that the larger control command results in the smaller performance indices
J6 and J7, as well as the larger values for indices J8-J10 as expected. As observed from Tables

3 and 4, the performance of the controllers, i.e., Cases B,C, and D, are quite remarkable.

As mentioned earlier, the acceleration of the AMD mass, #,,, is the most likely constraint
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to be violated, and there is a strong correlation between v and #,. Hence, it might be
possible to improve the performance of the controller by making further modifications to z
by considering the explicit relationship between u and #,, and pushing both toward their
allowable limits . However, considering the limit of Z,,, the resulting improvements may be

rather modest.

Figures 1-4 present a few representative frequency responses. For brevity, all figures
correspond to the controller in Case C. Figure 1 shows the loop-gain transfer function,
similar to Figure 6 of reference [22]. Figures 2-4 show the transfer function from the input
(earthquake) to the first floor relative displacement (z;), the displacement of the AMD mass
(zm) and the absolute acceleration of the AMD mass (%,,), respectively. In these plots, the

dotted curves correspond to the open-loop response.

Note that the controller had primarily lowered the peaks of the response in Figure 2.
In Figures 3 and 4, the controller has resulted in higher gains at the low and intermediate
frequencies. This is not surprising since Figures 3 and 4 correspond to the motion of the
AMD mass, and the relatively high gain of the control law is related to the increased motion
for the AMD mass. Also, note that the controller has resulted more of an increase in the
displacement response (Figure 3) than the acceleration response (Figure 4), due to the high
weighting placed on the mass acceleration in Cases C (recall that this acceleration was often

the critical constraint).

4 Conclusions

Quadratic stability and performance control techniques developed recently for the design of
dynamic output feedback compensators have been presented and applied to the AMD bench-
mark problem. Solutions through the use of linear matrix inequalities have been obtained.
Step by step design procedures for the controller have been described. Several controllers
have been designed for the AMD benchmark problem to illustrate the utility of the proposed
technique. Simulation results are presented so that the performance of the proposed control
design technique can be evaluated. These results are indicative of the ability of the proposed
method to significantly reduce interstory drifts and floor accelerations within the constraints

of the benchmark problem.

Without other considerations, such as system uncertainty, multi-objective criteria, etc,

the approach presented is equivalent to the basic H,, technique. However, the main advan-
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Table 3: Performance Indices: Stochastic Earthquakes

Case Jl Jz J3 J4 J5 O'(U)
B | 0.2156 | 0.3252 | 0.7264 | 0.7148 | 0.6636 | 0.2351
C |0.1781 | 0.2725 | 0.9380 | 0.9058 | 0.8106 | 0.3202
D |0.1678 | 0.2556 | 1.360 | 0.9710 | 0.8757 | 0.4664

Table 4: Performance Indices: El Centro and Hachinohe Earthquakes

Case | Js J7 Js Jo Jio | max(u) | max(z,,) | max(Z,,)
B ]0.3861 | 0.6813 | 1.3203 | 1.2696 | 1.3519 | 0.9932 | 3.5853 4.612
C ]0.3636 | 0.6318 | 2.1619 | 1.8235 | 1.4240 | 1.4033 | 4.9935 5.536
D }0.3547 | 0.6097 | 2.4823 | 2.1518 | 1.7039 | 1.5059 | 5.3850 5.849

tage of the proposed technique lies in its ability to account for other critical issues, including

modeling errors, actuator/sensor malfunction, and controller saturation. Extension of the

present formulation to cover these critical issues has been discussed briefly.
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