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SUMMARY

This paper presents a low order controller design method, using closed loop modeling plus
covariance control, with application to the benchmark problem in structural control for the
active mass drive system at the University of Notre Dame (see Spencer, Dyke and Deoskar!).
This method finds a satisfactory controller by iterating between the closed loop modeling and
the covariance control. The closed loop modeling implies that the model used for model-based
control design is extracted from the feedback system of the last iteration. The covariance control
finds the optimal controller to minimize an output variance and at the same time to bound the

other output variances.
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1. INTRODUCTION

Structural systems are typically dynamically rich. If we use the lumped parameter approxima-

tion like finite-element method to model a structure, we might need hundreds or thousands of
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elements. This will generate a model of order of hundreds or thousands for the structure. If we
use system identification and expect very accurate match between the identified model and the
experimental data, then the identified model for the structure might also be of high order. The
various modern control strategies usually provide a controller of the same order as the model.
Hence a high order system model is not useful for an implementable, reliable and cost-effective
control design. This raises a question about what models are suitable for control purposes. Here
the philosophy is not the same as the open loop response analysis where higher order (finite
element) models usually provide better results. The control objective dictates which system
features must be preserved in the models. Hence the model used in control design must be a
‘control oriented’ one. A discussion about this can be found in Skelton? and Skelton and Lul®.

Besides the above control-modeling interaction issue, there is another interaction which also
plays an important role in the closed loop performance. This is the so-called control-structure
interaction. Certain dynamics of the plant, do not exist in the open loop environment, but
appear in the closed loop system. The neglected sensor and actuator dynamics can be cast into
this category, since those dynamics are introduced into the closed loop system with the control
implementation. In Dyke, Spencer, Deoskar and Sain?, this interaction is studied for protective
structural systems and the results show that this interaction limits both the performance and
the robustness.

Since both the control-modeling and the control-structure interactions can be reflected by
the closed loop system behavior, a model which picks up the feedback information can serve
as a control-oriented model. Therefore a model generated from the closed loop data will be a
more appropriate one for control design. We call this closed loop modeling. The closed loop
modeling indirectly handles those difficulties in structural control: limited control authority and
modeling error. Another advantage of the closed loop modeling is that the closed loop system
usually has larger damping than the open loop system does. Hence the amount of measured
data to sufficiently capture the closed loop system behavior is smaller than the amount of data
to capture an open loop system behavior.

The benchmark problem in structural control proposed by Spencer, Dyke and Deoskar!® re-
quires designing a compensator of limited complexity, based on a high-fidelity structure model,
to achieve as stringent performance as possible. Hence the control-modeling interaction in the

benchmark problem could be very strong. The time delay, saturation, A/D and D/A effects in



the closed loop system also should be taken into account in order to find a high performance con-
troller. Hence the combination of the closed loop modeling with the control design is demanded
for solving the benchmark problem.

In this paper, a low order controller design method, using the closed loop modeling through
the so-called ¢g-Markov Cover (King, Desai and Skelton*) plus the covariance control (Skelton®),
is studied, which is then applied for the active mass drive system. This method iterates between
the closed loop modeling and the covariance control. The covariance control finds an optimal
controller to minimize an output variance and at the same time bounds the other output vari-
ances to specified values. The model identification technique used here is the so-called weighted
noisy g-Markov Cover, which finds a state space approximation of a physical system to match
both the Markov and covariance parameters generated from the response data with respect to
white noise process inputs.

This paper is organized as the follows. In section 2, the control design problem for the
active mass drive system is described. The closed loop modeling using weighted noisy g-Markov
Cover method is discussed in section 3. Section 4 presents an iterative procedure to design a
digital controller with prescribed output variance bounds. The iteration between the closed loop
modeling and the control design is considered in section 5. The numerical work is described in
section 6. A brief conclusion is included in section 7.

The following describe some notations used in this paper. A semi-positive definite matrix X
is denoted as X > 0. tr(-) denote the trace for a matrix (-). (-)* is the Moore-Penrose inverse
of a matrix (). Eq[-] is the steady state expectation operation. blockdiag(-) denotes a matrix
whose block diagonal elements are matrices. z in P(2) is the variable used in z-transform for a

digital transfer function.
2. CONTROL DESIGN PROBLEM OF THE ACTIVE MASS DRIVE SYSTEM

The active mass drive system at the University of Notre Dame described by Spencer, Dyke

and Deoskar! can be depicted by the diagram shown in Figure 1. Where the output y, with

T
Ys = [ Ysi Ysy Yss Ysy yss]

represent the noisy sensor outputs used for measuring the following system signals

T
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Figure 1: System setting of the controlled active mass drive system.

where z,, and &, are the displacement and the absolute acceleration of the active mass, Z; is the
absolute acceleration of the sth floor for ¢« = 1,2,3. Notice that these signals are contaminated

by the following additive noises in y,

T
ws=[wsl Wy, Wy Wi, ws5]
i.e.
T
ysz[xm %1 X9 X3 LEm] + w;.

Yy, is the noisy sensor output for the ground acceleration &, i.e.
Yg = Ty + wy

where w, is the noise associated with the ground acceleration sensor.

Using block diagram, Figure 1 can be depicted in (a) of Figure 2 where P depicts the
structure and includes the possible sensor and actuator dynamics. A high fidelity model of
P, called the evaluation model, is determined from the data collected at SDC/EEL using the
identification method presented in Dyke et. al®. The state space description of the evaluation

model is

t = Az+ B(u+ w,) + Ei,

ys = Cyx+ Dy(u+ w,) + By, (1)
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Figure 2: The block diagram description of the Active Mass Drive system.

Yg = Zg+ wy

z = Che+D,u+ F.i

where w, represents the noise associated with the actuator, K represents the control computer

and the total sensor output is
T
y;p Yy ] :

For the implementation purpose, the algorithm used in the control computer must obey a

y:

digital law, i.e., we are interested in designing a digital control logic. In the following the digital
control logic for the control computer K is denoted as K. In this paper, this digital control logic

K for which we are searching is a linear compensator with the following form

Loy — AC.’L‘Ck + Bc(yk - Dyuk)
up = (I +DDy) ™ (Cotey, + Deyi) (2)

where A.,B,, C.,D. are the controller parameters to be determined. Instead of designing a
continuous time controller then discretizing the controller to obtain a digital one as in Spencer,
Dyke and Deoskar!, we will design this digital controller directly from the discrete time system
P (see (b) of the Figure 2), where P is an augmented system including saturation nonlinearities,

time delay, A/D and D/A effects. A linear approximation P of P is used to deduce a linear



model.

Notice that since the sensor noise w; is very small in the benchmark problem setting, which
is not subject to the saturation, we can move the sensor noise w, from the before-saturation
location to the after-saturation location, as shown in (b) of Figure 2.

Hence for our approach, the benchmark problem can be specialized to the following.

Benchmark Problem Statement in Active Mass Drive Systems: Find a discrete
time approximation (model) P of the augmented plant P such that a digital control logic K of

the form (2) can be found from P which achieves the following
(1) The digital controller K is stable, of order < 12.
(ii) The sampling time of the digital controller K is T = 0.001 second.

(ii1) The closed loop system by incorporating K in (b) of Figure 2 will have as small as possible

performance indices J; ~ Jyg, which are defined in Spencer, Dyke and Deoskar!.

(iv) The closed loop system by incorporating K in (b) of Figure 2 will satisfy (for the Kanai-

Tajini spectrum ground excitation) the variance hard constraints
Eoo[u?] <1 volts, E[#2]<2 g, Ex[z2]< 3 cm (3)
and the peak value hard constraints
ml?x|uk| < 3 volts, mlgxx|fv'mk| <6 g, m}gx]wmk| <9 cm (4)
for 1940 El Centro and 1968 Hachinohe earthquake excitations.

(v) The magnitude of the loop gain must be below -5 db at all frequencies above 35 Hz.

Our approach here is an iterative one, which iterates between the modeling and control

design and can be conceptually described as the following.

Closed Loop Modeling: Identifying a discrete time model P for P at the sampling time
Ts = 0.001 with order < 12, based on the the data generated from the closed loop system

in (b) of Figure 2 with respect to the white noise process inputs.

Full Order Control Design: Designing a full order digital controller based on the discrete

time model P obtained from the closed loop modeling.



After a controller is designed, a simulation for the evaluation model in (a) of Figure 2 is
performed. If (i), (iii), (iv) and (v) in the problem statement are satisfied, this controller could
be a satisfactory one. If not, iterate between the closed loop modeling and the control design.

In the following sections, we will first discuss the closed loop modeling, then the control design.
3. CLOSED LOOP MODELING

For a given controller K, a linear discrete time model P of the augmented plant P can be
extracted from the identified closed loop system. Consider the stable system depicted in (b) of
Figure 2. First we want to find a linear discrete time model T(P, K) for this closed loop system.
Then we will construct a linear discrete time model P for P based on T(P,K). Where T(P,K)
denotes the transfer matrix

T
from | &, v, +w, vI 4+wl v, +w,+ 7, to ys
as shown in Figure 3. v,, vs and v, are white noise processes which are injected at the actuator
and sensor locations in the closed loop setting for the modeling or identification purpose. wq,
ws and w, are noises associated with the actuators and sensors. &, is the earthquake excitation.

Vg Vsy Vg, Wq, Ws, Wy and &, are uncorrelated white noise processes.

By —

mol

U Ys

ws + Vs

‘—?‘*wg*'vg

Tg

Wy + Vg K

Figure 3: The block diagram for modeling purpose.

Let
T

y=[y;f Yg

be the response of the closed loop system in Figure 3 with respect to the inputs v, vs, vy, W,



Ws, wy and Z4. Define the following augmented variables

I 0
Us W
v=1 vy, |, w= we |, Uy = y Wy =
Tg+ Vg Wy
Uy Wy

From the input-output data pair (v+ w,y) and a given integer ¢, the first ¢ autocorrelation

parameters of y can be computed from

1 N-1 .
Ryy, = ]\}1_1}100 N 1;) Yk+iYk »

and the first ¢ crosscorrelation parameters between y and v can be computed from

1 N-1
R, = lim — .
Yvg Nooo N kz_;) yk‘}’l k

the covariance of v can be computed from

1 V-1
V= lim — vl
W 2

N—=o0o0

which has the following structure

(X, 0 0 X, |
0V, 0 0
V =
0 0 V., o0
(X, 00 V,+X, |

with Xg, V,, V, and V, being the variances or covariances of Ty, Vg, vs and v,.
Assume that the associated noise w is a fixed covariance white noise with a known covariance
W of the structure
W = blockdiag (0, W,, W,, W,)

where W,, W, and W, are the variances or covariance of W, W and wy.
Notice that in the practical computation, R,,,, Ry, and V are replaced by the following

finite approximations
N RS T
By, = N Z Ye+iYk »
k=0

1 N-1

N _ T

Ryui - N Z yk+ivk’
k=0

—

—
=2

N T
V5 = N (R
k

Il
=]



for a sufficiently large integer N. In this paper, a typical value of N is 30, 000.
The identification method used here finds a linear state space model to match the following

data set

A .
Data, = {Ryy,, Ryy;, 1=0,1,---,¢—1}.

A linear model (Ar, Br,Ct, Dr) which matches the data set Data, is called a g-Markov
Cover (see King, Desai and Skelton*). The noisy ¢-Markov Cover algorithm studied by Skelton
and Shi”, and Skelton and Lu® finds such a linear model from the noisy measurement data pair
(v+ w,y). In the following, we will give a brief discussion about this. Construct the following

Toeplitz matrices

T T
Ry, Ryy1 Tt Ryyq—l
T
R A By, Ryyy - Rq—2
Yyq — . . . . ’
L Ryyq—1 Ryyq—z e Ryyo i
Ry, 0 - 0
A Ryvl RyUI e 0
Ryvq = . . . . !
L I%yuq—l }%yvq—2 U ]%yvo d

and based on these two Toeplitz matrices compute

D, = Ryy, — Ry, V1 (V+W)V-IRE

Yyug?
where
V = blockdiag(V,V,---, V),

W = blockdiag (W, W, - -, W).

If D, > 0, find a full rank matrix factor O,

D, = 0,07
and compute
T 1
M, = | AL, RL, - BDL | V7

Qg1 = [Iny(q—l) O]Oq-

9



Then the state space coefficient matrices (A7, By, Cr, Dr) of the system in Figure 3 can be

computed as

Br = Br(V+W)~2

and
Dr Cr I 0
. = [Mq Oq]-
Remark: The above system description is a particular ¢-Markov-Cover. All the ¢g-Markov-
Covers can be found in King, Desai and Skelton?, Skelton and Shi?, and Skelton and Lu8, by

adding a certain free unitary matrix.

Assume that the obtained linear model has the following transfer matrix
T(P,K) = Dr+Cy(zl - Ar)™'Br,
= | Tu(s) T(3) Tn(2)

and the state space descriptions of Ty,(2), T, (2) and T, (z) can be obtained from (A, Br,Ct, D7)

as
Tya(2) = Dya + Cr(2] — A7)~ Bya
T, (2) = Dy, + Cy(zI — Ar)"'B,,
Ts,(2) = Ds, + Cr(2I — A7) "' B,,.
where

Dr = [ Dyo D, Dy, ]
Br = [ Byo Bs, Bs, ]
or from the following input-output relationship

Ys = T(P, K)(v+ w)

Tg

= Tye(2) + T, (2) (vs + ws) + T, (2) (vg + wy + &g). (5)

Vg + Wq
Now we want to extract a linear model for P from (5), where the state space descriptions of

all the transfer matrices are already identified. From Figure 3, we have

Ys P(2) §
y= = wy + vy + e
Yg 0 U

U = v, + we + K(2)y.

10



This implies

P s L S I B A )
0 K(z) 0 0 I
- Uy + Wy
Denote .
q- P(z) 0 |\oi_ | Tu(®) Tia(2)
0 ] K(Z) T21(Z) T22(Z)

with partitioned dimensions compatible to the dimensions of y, and y,. It is obvious that 7%, (z)

is invertible. (6) can now be written as

Ys T11(2)P(2) &g . T11(2) Ti2(2)
Yy Ta1(2)P(2) Ve + W, To1(2) Ty9(2)

Comparing (5) with (7), T11(2) and P(z) can be expressed from the identified transfer func-
tions Ty, (z) and Ty, (2)

T(2)P(2) = Tya()
Tll(Z) = T31 (Z)
Hence the transfer matrix of P can be computed from
P(2) = Ty (2)Tya(2) (8)
and the state space description for (8) can be further obtained as
Is(z) = Dp+Cp(zI - Ap)_pr,
where the state space system matrices are
Ap = A — leDS_IICT,
Bp = By, — Bs,D;' Dy,
Cp= D;ICT,
Dp = D;ID,,.

Notice that 7';(z) is invertible implies T (2) is invertible, so is Ds,. The state space model
(Ap, Bp,Cp, Dp) is of the same order as the closed loop system (Ar, By, Ct, D7) and this way

of the plant model generated from the closed loop system has been used in Skelton and Lu!%®.

11



4. COMPENSATOR DESIGN

Consider the discrete time model P obtained from the closed loop modeling in the last section

Tpy1 = Amk+Buk+E:ﬁgk
Zr = C’z:ck-l—f)zuk-i—ﬁ’zigk (9)

ye = Cyar+ Dyuy + Fy3,, +wy

where z represents the system state, z denotes the performance variable, u is the control variable,

y is the measurement. Notice that the case where the direct measurement of the disturbance &

T
can also be cast into the above form: let y = [ y! y, | » then
Ys C D E W
y= =| et | U fmt| T |+
Yg 0 0 I wy

Hence in the following, we will work on the general plant (9) instead of the discrete time
version of (1). We assume (4,C,) is detectable and (A, B) is stabilizable.

Denote K as the set of all controllers which (i) stabilize the evaluation model of the system;
(i) satisfy the loop gain constraint; (iii) make the closed loop variables meet the hard constraints

in (3) and (4). The benchmark problem require evaluation of
Ji, i=1,2,--,10. (10)

The multiple performance criteria (J;’s) involve some specific disturbance sources (historical
earthquake records and disturbances with the Kanai-Tajimi spectrums) and hard constraints.
There are no systematic methods to exactly solve the above problem. Instead, we model the

earthquake disturbances as white noise processes and solve the following problem
. 2
min oo [27], (11)

where z;’s reflect the variables involved in computing the performance indices J;’s. In this
paper, due to the closed loop modeling feature, we only take those measured variables as the

performance variables, i.e., we have

2= [an & &y B3 Em u]l.

12



A solvable control problem which indirectly reflects the objectives in (10) or (11) can be

further expressed in the following constrained optimization problem
mén{Em[zngo] , Eo[22] < 71, Bool22] € Zy, -+, Boo[22] < 2}, (12)
where n is the dimension of z, zg is a vector variable of the following form
20, = C’oxk + ]jguk + Fga'igk.

(12) is similar to the so called output variance control (OVC) problem in Skelton®. It has been
shown that a deterministic interpretation of the variance constraint is the peak value constraint.

The above consideration leads to our approach for the benchmark problem, which can be
summarized as the follows: solving the optimization problem (10) indirectly (i) by tuning
71, Z3, -+, Z, and solving the optimization problem in (12) which takes care of the stabilization
and hard constraints; (ii) by incorporating the closed loop modeling with (12) which takes care
of the control order limitation; (iii) by simulation through the high fidelity evaluation model
which finally validates the controller.

Now let’s solve the optimization problem (12). Consider the following observer-based con-

\ troller

Tegpr — Axck + BUk + Bc(yk - -Dyuk - éyxck)

U = CCka + Dc(yk - byuk - éy$ck) (13)

Using (13) to stabilize (9) leads to the following closed loop system

Zry1 = (A—B.Cy)ip+ (E— B.F)i, — Bowg (14)
Topry = (A+BCoae, + (BDe+ B.)(Cydi + Fig, + wi) (15)
2 = (éz + [)zcc)xck + C'zik + szc(CA'y{i'k + ﬁ‘zi:gk + wk) + szigk (16)

where Z;, =z — x., is the state estimate error.
If we assume Z,, and wy as white noise processes with covariances X, and W, then using

(14) the covariance of the state estimate error Z satisfies

~ ~ A~ ~

X =(A-B.C)X(A-B.C)T +(E - B,F)X,(E - B.F)T + BWB! (17)

for any B. such that A — BCC'y is asymptotically stable. Notice that the existence of such B, is
guaranteed by the fact that (4,C,) is a detectable pair.

13



One can prove that the separation principle between the state feedback and the state esti-
mator holds by following the same procedure as in Skelton®. Hence from (15) the covariance of

the control state z. satisfies

~ A~ ~ ~

X.=(A+ BC)X.(A+ BC)T + (BD.+ B,)¥(BD,+ B,)T (18)

for any C, such that A+ BC, is asymptotically stable. Notice that the existence of such C, is
guaranteed by the fact that (A, B) is a stabilizable pair. Where

U =C,XCL + FX, FT 1w (19)

Consider that a digital controller K solving the optimization problem (12) is equivalent to
that K solving the following problem for some ¢;, ¢ = 1,2,---,n (see Skelton®, and Zhu and
Skelton?)

mén{Eoo[zOT Rzo] + Eoo[27Q2]} (20)

T
where @) = diag(q1, ¢, -+, qn) and 2= | 2; 2, ... 2z, | . Denote

vR 0 20
0 V@ || =

N>
(l

the cost function in (20) is Eo[27 2] where
2=Cuxr+ Dyup + Dgfv'gk

and

o VRCq Do VRDg b VRFE, | 1)

~ ) U ~ ’ g ~
VQC. V@D, VQI;
Hence from (16) and considering the separation principle, the variance of 2 can be computed

as the following
Eoo[72] = tr{(C + DyCe) Xc(C + DuCo)" + CXCT + D, D.YDI DY + D, X,DT}.  (22)
Notice that from (18), X. can be written as

X. =Y (A+BC)*BD. + B.)¥(BD.+ B,)T(A+ BC,)T*.
k=0

14



By substituting this X, into (22) and using the property of the tr(-) operation
tr(NM) = tr(MN),

(22) can be expressed as

Ewl272] = t{¥(BD.+ B.)T[Y (A + BC.)*(C + Du.C.)(C + D.Ce)"(A+ BC.)™(BD. + B.)}
k=0
+ t(CXCT + D,D.YDI DY 4 D X, DT).

If we denote

Yo = 3 (A+ BCY*(C + DuCo)(C + DC)T (A + BC,)TF
k=0

then Y, satisfies the following Lyapunov equation
Yo = (A+ BC)TY.(A+ BC.) + (C + D.C)T(C + D,CL), (23)
and (22) can be replaced by the following

Eoo[£72] = tr{¥[(BD, + B)TY.(BD. + B.) + DTDTD, D]} + tr{CXCT + Dy X,DT}. (24)

Therefore the optimization problem of (20) can be equivalently expressed as the following

constrained optimization

Jopt = min  {E,[272], (17), (23), (24)}
D.,C.,Ye,B., X
= min min min{Ex[74], (17), (23), (24)}. (25)

D, CCch BC,X

From (24), we have
OE . [572)]
X

hence in order to minimize E[27 2], we must minimize X which depends only on B, (see (17)).

=c'c+CI'p’plp,n.C, > 0,

By using the completion of squares, the optimal B, which minimizes X can be computed as (see
Skelton®)
B. = (AXCJ + EX,F,)(Cy,XCT + F, X, ET)~! (26)

where the optimal state error covariance satisfies

X = ARAT 4 BX,ET - (ARCT 4 BX,ETY U~ (AXCT + BX, )T (27)

15



and W is defined in (19). Hence we have

Jopt = min min {Eo[372], (27), (23), (24)}

< RN

From (24), we have

OE o [57 3]

= (BD.+ B.)¥(BD,+ B.)T > 0.

This implies that in order to minimize E[27 2], we must minimize Y, which depends only on

C'. (see (23)). The optimal C; which minimizes Y, can be computed as
C.=-9"Y(ATy.B+cTD,)T (28)
where the smallest Y. is the solution of the following Riccati equation
Y. =AY, A+ CTC - (ATY. B+ CTD,)e (ATY.B + CTD,)T (29)

and

@ = (BTY.B+ DI'D,). | (30)

Hence the optimal value of the cost function can be further simplified to
Jopt = rrll)icn{Eoo[éTé], (27), (29), (24)}
and the optimal D, can be found as
D.=-9"'BTY,B,.

Combining the above consideration with the weight ) updating method, we obtain the
following generalized output variance control (GOVC) algorithm. For a set of given variance
bounds Zy, Zy, -+, Zy,, this algorithm finds a controller (13) solving (12). The reason that we
call the constrained optimization problem (12) the generalized output variance control problem
is due to: (i) GOVC generalizes the so called OVC problem studied by Zhu and Skelton® and
Skelton®, where zp = u and z is a linear combination of the plant states and does not include
the control variable u; (ii) GOVC deals with generalized plant description of the form (9) and
the controller found in the GOVC algorithm is not limited to be strictly proper. This algorithm
can be summarized as the follows.

Generalized Output Variance Control Algorithm

16



Step 1 Solve for X from the Riccati equation (27) and compute the control parameter B, from

(26).

Step 2. Choose an initial Qo = diag(go1, 902, - - -5 gon) > 0 and compute Y, from the following

Riccati equation
Y. = ATY,A+ CTRCy+ CTQ.C, -
(ATY.B + C§ RDo + C7 QuD:)@~ (ATY.B + C§ RDo + C7 QoD.)",
where & = BTYCB + EgRDO + ﬁzTQoﬁz. Compute the control parameters

D, =-®"'BTY.B,,

C.=-®"YATY,B+ CTRDy + CTQuD,)T.

Step 3. Compute X, by solving the following Lyapunov equation
X, = (A+BC)XA(A+ BC)" + (BD. + B)(C,XCL + B, X, EF + W)(BD, + B)*.

Step 4. Compute the output covariance of z

Zz = (C.+D.D.CYX(C.+ D.D.Cy)T + (C. + D.C)X(C, + D.C.)T
(F, + D,D.F)X,(F, + D.D.F,)T.

Let Z;; be the i-th diagonal element of Z. For a given integer 3 (which affects the conver-

gence rate of the algorithm), compute

Zi*? n
qz-={7} gio, If Y lgi —qoil < e

K =1

go to step 5. Otherwise, set g¢; — ¢;o and go to step 2, where € is the error tolerance.

Step 5 The system matrices of the controller (2) can be formulated as

A.= A+ BC, - B.C, — BD.C,,

B. = B. + BD.,

C.=C.-D.C,, (31)
D. = D..



Remark: Notice that for a given (g and R, the step 1 and step 2 generate an LQG controller
of the form (31) for the cost function (20). This problem is also a special case of the so-called
multiobjective Hy control problem studied by using the Linear Matrix Inequality as in Boyd,
Ghaoui, Feron and Balakrishnan!!. The above GOVC algorithm can be easily realized in Matlab

by using the discrete-time algebraic Riccati equation solver.
5. INTEGRATION OF CLOSED LOOP MODELING AND CONTROL

The following is the procedure we used to find a satisfactory controller for the benchmark

control problem.

Step 1 Let Z; for i = 1,2,---,n be the output variance bounds. Choose integer ¢ (number of
Markov/covariance parameters to be matched) and integer V (length of the experimental

data). Set ¢ = 0 and Po as the evaluation model.

Step 2 GOVC Controller Design: Do model reduction using ¢-Markov Cover for P, to obtain
a lower order model P;,.. Choose variance performance bounds ki, 7 =1,2,---,n, for the
design model Pir. i.e., for the design model we want to design a digital controller K; to

achieve Eoo[z]z] < kj for j = 1,2,--+,n by using the GOVC algorithm. Store the weight
Q.

Step 3 Performance Study: ¥valuate the controller K; with the evaluation model by white
noise excitation and compute the output variances. If the closed loop system is unstable,
the design specification k;’s in step 2 are too tight and must be relaxed. Check whether
Eo[2?] < Z; for i = 1,2,---,n. If this is true, go to step 5; Otherwise go to step 4 to

update the design model.

Step 4 Weighted Closed-loop Model: The state space description for the closed loop system
transfer matrix 7; = Ty Ts Ts, | can be obtained by using the algorithm presented
in Skelton and Lu'®, which uses the weight ) obtained in step 2. No model reduction is

needed at this stage, i.e., high order model of the closed loop system is acceptable.
Step 5 Set ¢ = i + 1. The plant model P; is extracted from T; (see (8)). Go to step 2.

Step 6 Get the controller formula from previous iteration. Stop.
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Remark: Notice that the performance bound Z;’s for the actual plant (not the model) can
be determined based on the open loop variances Z;’l’s (open loop response with respect to white

noise inputs if the system is stable), i.e.
Zj = ajZ;»’l

or based on the closed loop variances Zjl obtained from an initial, unsatisfactory controller, i.e.
Zj = oszjl.

«;’s usually fall within the interval [0, 1].

Remark: k;’s are the performance bounds for the designed closed loop system, i.e., the
closed loop system obtained by incorporating the controller with the model (not the actual
plant). ; can be determined from the maximum accuracy (See Skelton 12) of the model or open

loop response of the design model if the model is stable or , i.e.

ol
J

— [.,.ma .
k; = PR, or Kj = ajK
where
ma __ A v AT [, ”
K7 —C'ZJ-XCZ].+FZJXQFZJ.

ol A ~T n n
ke =Co, XCT + F, X, F,

where X satisfies (17) and X satisfies
X = AXAT + EX,ET.

C’Z] and sz are the 7th rows of the C, and F. /i, 13’2, E, C, are the state space system matrices
of the model P;, in the form of (9). a;’s are usually the grid points in the interval [0, 1] and
B;’s are usually the grid points in the interval [1, r) with r being a sufficient large number, for

example 10.
6. CONTROL DESIGN FOR BENCHMARK PROBLEM

Consider using the integrated modeling and control procedure to the benchmark problem

described in section 2. The sensor measurements used here are

5

T T
_ o . o W W T
Y=\ zp & ¥ %3 I, I ] + [ w; Wy ] .
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The first model Py, is obtained by using ¢-Markov Cover to the evaluation model with
q = 300 (number of the Markov and covariance parameters to be matched), which is of order
10 (A 12th order model can be similarly obtained, however for the purpose of the comparison
with Notre Dame’s design model, a 10th order model is generated). A GOVC controller Kg
is designed based on Po,. This controller stabilizes the evaluation model and the achieved
performance indices J; ~ Jyg are computed, which are much larger than those values of the
Notre Dame design (Spencer, Dyke and Deoskar!). This means that for control purposes the
model F30r is worse than the Notre Dame design model. We continue the procedure and the
second model Py, of order 10 is generated from the closed loop system of Ko and FA’()r- A
GOVC controller K; is designed for P,,. K, stabilizes the evaluation model and the achieved
performance indices Jy ~ Jyg are listed in Table 1. This controller uses very large control energy
to achieve interstory drift and floor acceleration performances (compare to Notre Dame design).
In the third iteration, a model Py, of order 10 is obtained from the closed loop system of K; and
Pi. A representative comparison of the transfer function from the actuator command to the 1st
floor absolute acceleration for P;, (i=0,1,2), the Notre Dame design model and the evaluation
model is shown in Figure 4. The model generated from the open loop model reduction (the
Notre Dame design model) matches well with evaluation model at frequencies lower than 40 Hz
and has large modeling error at frequencies beyond 40 Hz. The model P, obtained through
the closed loop modeling matches well with the evaluation model for frequencies ranged from
5 to 90 Hz, and has large modeling error for frequencies below 5 Hz. The model Po, and Py,
have very large modeling errors in comparison with P,,., however the modeling error decreases
as the iteration goes. This implies that the closed loop modeling can gradually improve the
model used for the control design. Two GOVC controllers are designed from the model isg,-.
One corresponds to higher control energy and the other lower controller energy. The controller
with higher control energy does not meet the constraint on the loop gain (see Figure 5), and
the other one does. So we take this controller as K;. The achieved performance indices for this
controller Ky, J; ~ J1o, are computed and are listed in table 1. (The RMS values are computed with the
nominal Kanai-Tajimi parameters, w, = 37.3 ,%5 and Cg = (.3, using a simulation of 300 second
duration; no maximization over (a)g, Cg) was done.) For the first five criteria, the RMS values of the

constraint variables are

E.. [xi] = 0.6761 cm, Ew[xfn] = 0.8952 g, E. [42] = 0.1585 volts.
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Ji Ja J3 Jq Js
2nd iteration | 0.1587 | 0.2337 | 0.9871 | 0.9872 | 0.9890
3rd iteration | 0.2762 | 0.4205 | 0.5161 | 0.5200 | 0.5001
Je J7 Jg Jo J1o
2nd iteration | 0.3577 | 0.5496 | 2.5489 | 2.5927 | 3.5903
3rd iteration | 0.4369 | 0.6908 | 0.7197 | 0.9257 | 1.0589

Table 1: Achieved performance indices

Those satisfy the hard constraints in (3). For evaluation criteria six through ten, the peak values of the

constraint variables are

max Ixmkx = 2.1306 cm, max lxmk| = 4.8307 g, max |uk] = 0.5957 volts,

which satisfy the hard constraints in (4). The loop gain transfer function is shown in Figure 5.

The time responses of the control signals, the 3rd floor absolute accelerations and the in-
terstory drifts between the 1st and the 2nd floors for both the open loop and the closed loop
system are shown in Figure 6 for El Centro earthquake excitation, and in Figure 7 for Hachinohe

earthquake excitation.
7. CONCLUSION

The iterative approach between closed loop modeling and covariance control here can improve
the model of low complexity in which many feedback related features can be preserved. Hence
a low order controller with high performance can be achieved by our approach. In addition, the
closed loop identification is of importance in determining the dynamic behaviors of a structure

where the measured data is in the closed loop sense, hence it could be used in safety monitoring.
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Bode Plot Comparison
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Figure 4: Bode magnitude comparison for the transfer functions of the 28th order evaluation
model (dotted line), Notre Dame 10th order design model (dotted line), and the model generated
at the 1st (dashdot line), 2nd (dotted line) and 3rd iterations (solid line). Actuator command

to the 1st floor absolute acceleration.
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Loop Gain Plot (breaking at plant input) Loop Gain Plot {(breaking at plant input)

30 T T T 30 T T T T
20 20 .
10
o 0 [
o hA
© @ 7 n 7
- o
2 2
510 &
(] ©
E E q
3 g
© 20 ©
> >
3 S _20f 1
o o
@ -30 7]
-30F 1
-40
_50 —40r q
_60 ) L L L _50 L . L L
0 20 40 60 80 100 0 20 40 60 80 100
Frequency (Hz) Frequency (Hz)

Figure 5: Loop gain transfer function for two controllers deduced for the model obtained at
the 3rd iteration. The left plot shows that the lower energy controller satisfies the loop gain
constraint while the right plot shows that the higher energy controller does not satisfy the loop

gain constraint.
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Ground acceleration: El Centro earthquake Control signal
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Figure 6: For the El Centro earthquake excitation, the corresponding control signal, the 3rd
floor acceleration, and the interstory drift between the 1st and the 2nd floors. The dotted line

indicates the open loop responses.

Ground acceleration: Hachinohe earthquake Control signal
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Figure 7: For the Hachinohe earthquake excitation, the corresponding control signal, the 3rd
floor acceleration, and the interstory drift between the 1st and the 2nd floors. The dotted line

indicates the open loop responses.
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