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SUMMARY

A probability-based robust control design methodology is presented that is

applied to the \benchmark system," which is a high-�delity model of an

active-mass-driver laboratory structure. For the controller design, the objec-

tive is to maximize the probability that the uncertain structure/controller

system achieves satisfactory performance when subject to uncertain excita-

tion. The controller's robust performance is computed for a set of possible

models by weighting the conditional performance probability for a particular

model with the probability of that model, then integrating over the set of

possible models. This is accomplished in an e�cient manner using an asymp-

totic approximation. The probable performance is then maximized over the

class of constant-gain acceleration-feedback controllers to �nd the optimal

controller. This control design method is applied to a reduced-order model

of the benchmark system to obtain four controllers, two that are designed on
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the basis of a \nominal" system model and two \robust" ones that consider

model uncertainty. The performance is evaluated for the closed-loop systems

that are subject to various excitations.

KEY WORDS: active mass driver; benchmark structure; structural control;

robust control; probabilistic control

1. INTRODUCTION

A probabilistic methodology is used for the design of a robust controller for

the \benchmark system," which is a high-�delity model of an active mass

driver (AMD) laboratory structure that is described by Spencer et al.1 This

model is available from the World Wide Web at http://www.nd.edu/~quake.

Using the total probability theorem,2 the probability of satisfactory perfor-

mance for a particular controller is obtained by integrating the performance

of a particular model, weighted by that model's probability, over all possible

models. The design objective for the controller is to maximize the probability

of achieving satisfactory performance, or equivalently, to minimize the prob-

ability that the system fails to achieve satisfactory performance, henceforth

termed the \failure probability." Satisfactory performance is achieved when

the response variables of interest, in this case the benchmark system's inter-

story drifts and the AMD actuator stroke and acceleration, remain within

speci�ed \safe" levels over a given time period. In this study, the parameters

describing the Kanai-Tajimi excitation model have the greatest uncertainty,

and the parameters describing the reduced-order linear model of the bench-

mark system that is used for design purposes are assumed to be accurate.

2



For this application, therefore, the controller is \robust" with respect to a

set of possible stochastic excitation models only, although the methodology

can also include a set of possible structural models for the system.

The probabilistic robust control approach creates controllers that incor-

porate probabilistic descriptions of the model uncertainties into the design

of the optimal controller. The controllers are designed to satisfy probable

performance over the class of uncertain models, and may be less conservative

than those designed using methods based on the worst-case performance (e.g.,

H1-control and its derivatives), where the \worst" model may be quite im-

probable. Probabilistic uncertainty descriptions can arise when models of the

system are identi�ed using response data, or when the modeling uncertainties

in describing the system are quanti�ed based on engineering experience.

Stengel and Ray3 and Marrison and Stengel4 have investigated control

system analysis and synthesis for uncertain systems using Monte Carlo sim-

ulation methods. Spencer et al.,5,6 Field et al.,7 and Field et al.,8 have investi-

gated alternatives to Monte Carlo simulation for probabilistic control analysis

and design using �rst and second-order reliability methods (FORM/SORM)

to compute the probable performance. In the methodology introduced in this

work, an e�cient asymptotic method9 is used to approximate the probability

integrals to determine the system's performance.

The next section of the paper describes the design methodology for the

probabilistic robust controller. Section 3 summarizes the model descrip-

tion, uncertain variables, and probabilistic performance measures used for

the AMD benchmark problem. Section 4 describes the four controllers that

are designed for this problem using a nominal reduced-order linear model
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of the benchmark system. The �rst two controllers are designed using the

Kanai-Tajimi �lter parameters that are considered the \most probable" un-

der a probabilistic description of the input-model uncertainty. The other two

controllers are designed to be robust with respect to the possible variations

in the Kanai-Tajimi �lter parameters. Results from the simulated responses

of the closed-loop systems that incorporate these controllers are presented in

Section 5.

2. PROBABILISTIC CONTROLLER DESIGN

2.1. Failure probability calculation

The design objective for the probabilistic robust controller is to minimize the

failure probability of the composite structure-actuator system for a class of

uncertain models that could represent the system and excitation. The total

failure probability, as implied by the total probability theorem,2 is given by

integration over all the possible models of the probability of failure condi-

tional on a particular model weighted by the probability assigned to that

model.

Failure is de�ned to occur when at least one of the response quantities

for a system model exits the \safe" region for the �rst time. The safe re-

gion, denoted S, is the region in performance-variable space bounded by the

failure thresholds for the various failure possibilities. The failure region is

the complement of this region, and is represented by F . In the benchmark

example, failure is de�ned to occur when the relative drift between adjacent

stories exceeds a certain level, or when the AMD actuator stroke or actuator
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acceleration exceed certain levels. The failure probability is denoted by

P(Fj�; �) := P [� fx(t) 2 S; 8 t 2 (0; T ]gj�; �] ; (1)

where � denotes the logical \not." This failure probability is conditional

on the particular model that is chosen to represent the system, where the

particular model, �, is a member of the set of possible models for the system,

�, as well as the controller that is chosen for the system, � 2 �, where �

represents the set of allowable controllers.

This failure probability calculation is the classic \�rst-passage" problem,

which has no known exact solution for a dynamic system subject to random

excitation.10 Hence, an approximate solution must be used. The approxima-

tion is based on threshold-crossing theory,10 which estimates the mean rate

that a random process crosses a speci�ed boundary in the outward direction,

and is termed the \out-crossing rate."

Calculation of the failure probability from the out-crossing rate involves

treating the failures as independent arrivals of a Poisson process. Using the

Poisson approximation, P(Fj�; �) is the probability of at least one failure

during the time interval (0; T ], assuming an unfailed system initially, so

P(Fj�; �) ' 1� exp

�
�
Z T

0

��(�; �; t)dt

�
; (2)

where ��(�; �; t) is the mean out-crossing rate of the threshold level �. Ad-

ditionally, under the assumption of stationarity, ��(�; �; t) = ��(�; �) is inde-

pendent of time, so the conditional failure probability is approximated by

P(Fj�; �) ' 1� exp [���(�; �)T ] (3)
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For a scalar-valued Gaussian process where the random variableX(t) and

its derivative _X(t) are independent and normally distributed, with means of

zero and variances of �x and � _x, respectively, the number of outward crossings

per unit time of the two-sided threshold �� is10

�� =

Z 1

�1

_xfX _X(�; _x)d _x

=
� _x

��x
exp

�
�1

2

�2

�2
x

�
: (4)

For vector processes, the out-crossing rate can be obtained by integrating

the joint probability density function of the response, fX _X(x; _x), evaluated

at each failure surface, for all velocities with components pointing outward

from that surface, then summing this quantity over all the failure surfaces.

Unfortunately, when the response variables are correlated, this is often a di�-

cult integration even for low-dimensional failure surfaces. For simpli�cation,

an upper bound on the composite failure probability is used, which is given

by adding together the probabilities for each failure possibility.

2.2. Model uncertainty description

Probability distributions assigned to the set of possible models for the system

are used to quantify the relative plausibility of each model, where the plausi-

bility of a model is related to its ability to predict the future response of the

system.11 These probabilities are speci�ed based on the modeler's present

state of knowledge of the system, where the knowledge can be a combination

of theoretical modeling, system identi�cation using previous response data,

and \engineering judgment."

In addition to the modeling uncertainty, the nature of the disturbance

is uncertain as well. In order to simulate the response of the system to an
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earthquake, the uncertain excitation is described by a Kanai-Tajimi stochas-

tic model, that is by a Gaussian white noise process passing through a linear

second-order �lter. The output from the �lter mimics the stationary por-

tion of the strong ground shaking from an earthquake. The �lter's peak

frequency, damping ratio, and input magnitude parameters are considered

uncertain, and are prescribed by a priori probability distributions.

2.3. Total failure probability

The total probability of failure is obtained by synthesizing the methods of the

two previous sections. Based on the total probability theorem, an integral of

the failure probability for a particular model (from Section 2.1), weighted by

the probability of that model (from Section 2.2), over the set of all possible

models yields the total failure probability,

J(�;�) := P(Fj�;�) =
Z
�

P(Fj�; �)p(�j�)d�: (5)

This probability is conditional on the class of possible models, �, with its

corresponding probability distribution, and the particular controller used,

� 2 �.

Because the dimension of the integral grows with the number of uncertain

parameters, an e�cient method must be chosen to approximate the integral.

The method used herein is an asymptotic expansion about the region of the

integrand with the greatest contribution to the probability integral.9,12,13

The asymptotic approximation is based on Laplace's method14 for integrals

of the form

I =

Z
�

el(�)d�; (6)
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and involves �tting a Gaussian-type surface to the \design point," or maxi-

mum, of the integrand in (5). In this application, an l(�) of the form

l(�) = log f(�) + log g(�); (7)

can be chosen, where f(�) := P(Fj�; �) and g(�) := p(�j�), from (5). Then,

the integral (5) can be approximated by

J(�;�) ' (2�)n=2
h(��)g(��)p
detL(��)

; (8)

where �� maximizes (7) (and so the integrand of (5)), and L(��) is the Hessian

of l(�) evaluated at ��. See Papadimitriou et al.9 for the details of this

derivation. Since an optimization must be performed to �nd the design

point for the asymptotic expansion, the computation time required for this

technique has an upper bound that grows exponentially with the number

of uncertain parameters. Monte Carlo integration is another alternative,

where the number of computations required to obtain an estimate of the

solution depends only on the desired accuracy and not the dimension of the

integral. However, the Monte Carlo technique is expected to be prohibitively

expensive computationally for the small failure probabilities that are desired

for a structure.

2.4. Controller optimization

The optimization seeks the particular controller �̂ out of the class of possible

controllers � that minimizes the cost function of the total failure probability

described above in (5), that is,

J(�̂;�) = min
�2�

J(�;�): (9)
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Solution of (9) requires a nonlinear optimization that can be performed using

a variety of existing numerical methods (see Pierre15 or Press et al.,16 for ex-

ample). The integration of (5) in the previous section must be performed for

each function evaluation in the optimization, so in the worst case the solution

time grows exponentially with both the number of uncertain parameters and

the number of parameters in the control law. The optimization method that

is used in this paper to �nd the design points for the asymptotic integration

of (5) and to compute the controllers in (9) is an adaptation of the Nelder

and Mead nonlinear simplex algorithm16 that is implemented in Matlab
17

as the function fmins(). To illustrate the probabilistic control design method-

ology in the benchmark example, a simple controller class is chosen, which

is the class of acceleration-feedback controllers, where a low-pass �lter that

serves as a frequency-dependent weighting function on the controller's per-

formance is incorporated into the controller. This dynamic compensation

proves necessary to reduce the sensitivity of the system to sensor noise and

modeling error, as un�ltered high-frequency signals signi�cantly increase the

required actuator acceleration. In two separate controller designs for the

system that are discussed further in Sections 4 and 5, the roll-o� frequency

for the low-pass �lter is both selected a priori and allowed to vary as an

additional controller parameter.

3. AMD BENCHMARK PROBLEM DEFINITION

3.1. Overview

The various facets of the probabilistic robust control methodology are il-

lustrated by designing a controller for the AMD benchmark system.1 The
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closed-loop system is a Simulink18 model that is created by inter-connecting

the controller with a high-�delity evaluation model of a laboratory structure.

The Simulink model incorporates many of the features of the actual lab-

oratory system, such as actuator and sensor saturation, sensor noise, time

delays, and discretization errors. The system response is obtained through

numerical integration of the equations of motion represented in the Simulink

model. To reduce integration errors, the integration is performed for a time-

step of 0.0001 sec, while the inputs and the controller are updated every

0.001 sec. The system's performance with the probabilistic robust controller

is obtained for a variety of performance measures, so the controller can then

be compared with controllers synthesized for the same test-bed using other

methods.

3.2. System description

The benchmark system is based on a high-�delity 28-state linear model of

a laboratory structure, which captures the structure's behavior in the fre-

quency range from 0{100 Hz. The inputs to this linear model are the ground

acceleration, �xg, the control force, u, and the sensor noise, v. The outputs

are the measured outputs,

y =
n
xm �xa1 �xa2 �xa3 �xam �xg

o0
;

which are the potential controller inputs, and the vector of performance

variables,

z =
n
x1 x2 x3 xm _x1 _x2 _x3 _xm �xa1 �xa2 �xa3 �xam

o0
:

The quantities x1, x2, x3, and xm represent the displacement of the structure

at 
oors 1, 2, and 3, and the actuator displacement, respectively; _x1, _x2, _x3,
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and _xm are the velocities at these locations; and �xa1, �xa2, �xa3, and �xam are the

absolute accelerations. The state-space model for this 28-state \evaluation"

model is distributed with the benchmark Simulink model.

As speci�ed by Spencer et al.,1 the measurement noise is modeled by

a Gaussian distribution with zero mean and standard deviation of vrms =

0:01 V. This signal is implemented in the Simulink model as a discrete

Gaussian process calculated at each �T = 0:001 sec, and is held constant

for the integration over the duration of that interval. This noise is added to

each measured output channel in the simulation.

3.3. Design model description

A linear 10-state reduced-order \design" model of the benchmark system is

provided for controller design purposes.1 The reduced-order model closely

tracks the behavior of the 28-state linear model in the frequency range from

0 to 30 Hz. This frequency range includes the three fundamental structural

modes that are the primary contributors to the inter-story drifts. The system

matrices Ar, Br, Er, Cyr, Czr, Dyr, Dzr, Fyr, and Fzr associated with the

reduced order system are also distributed with the Simulink benchmark

model. The state-space equations of motion for this reduced-order model are

given by

_x = Arx +
h
Br Er 0

i
8>>><
>>>:
u

�xg

vr

9>>>=
>>>;

8<
:y

z

9=
; =

2
4Cyr

Czr

3
5 x+

2
4Dyr Fyr �rIy

Dzr Fzr 0

3
5
8>>><
>>>:
u

�xg

vr

9>>>=
>>>;
:

(10)
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The \noise," vr, in (10) includes both the sensor noise and the model error,

which is the error between the output from the benchmark system and the

output predicted by the reduced-order model. Hence, vr is scaled by �r, where

�r � 0:01 V, such that the noise term has the appropriate standard deviation,

and vr is modeled as a zero-mean and unit-variant Gaussian process.

The performance variables included in the design objective are the inter-

story drifts and the relative position and absolute acceleration of the actuator.

Denote the variables needed to compute the failure probabilities for these

performance variables by

zp :=
n
d1 d2 d3 xm _d1 _d2 _d3 _xm �xam e...x am

o0
;

where di := (xi�xi�1) is the interstory drift for story i, _di is its velocity, and

xm, _xm, and �xam are the position, velocity, and acceleration of the actuator

mass, respectively. The quantity e...x am is an estimate of the derivative of the

actuator's acceleration, which is required for the failure probability calcula-

tion in (3) and (4), and is obtained using a �lter that mimics a di�erentiator

at frequencies below 30 Hz. The di�erentiator's transfer function is given by

H
f

...
x am�xam

=
!2
afs

s2 + 2�af!afs+ !2
af

; (11)

with !af = 188:5 rad/sec and �af = 1=
p
2. Let the system Gz denote the

relationship between z and zp such that zp := Gzz.

In addition, the control law is constructed using the acceleration feedback

from the accelerometers mounted on each 
oor, which is a subset of the entire

output vector y. Hence, yc = Lyy, where yc =
n
�xa1 �xa2 �xa3

o0
.

The controller objective is evaluated on the basis of the theoretical sta-

tionary system response to a �ltered white-noise excitation, where the �lter
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is the well-known Kanai-Tajimi �lter,19 such that the spectrum of the �lter

output mimics that of the stationary portion of a \typical" earthquake. The

power spectral density function for this �lter is

S�xg�xg(!) =
S0(4�

2
g!

2
g!

2 + !4
g)

(!2 � !2
g)

2 + 4�2g!
2
g!

2
; (12)

which can be represented in the time domain with the following state equa-

tions

_xf = Afxf +Bfw

�xg = Cfxf

(13)

where w is zero-mean Gaussian white noise with unit intensity,

Af :=

2
4 0 1

�!2
g �2�g!g

3
5 ; Bf :=

2
40
1

3
5 ;

and

Cf :=
p
S02�

h
!2
g 2�g!g

i
:

Also, S0 is speci�ed by Spencer et al.
1 such that the input variance is uniform

for all !g and �g, so

S0 := �2
w

0:03�g
�!g(4�2g + 1)

g2 � sec: (14)

The constant �w is used to scale the input variance for di�erent levels of

excitation, and �w = 1 implies ��xg = 0:12 g.

De�ne Gm to represent a general linear system given by the state-space

equations of motion _x = Amx+Bmw, y = Cmx+Dmw. Using this notation,

let Gdes represent the state equations (10) for the linear \design" model, Gf
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the Kanai-Tajimi �lter of (13), and Gc the state equations for the controller.

A block diagram of the system interconnection for this design model of the

benchmark system is shown in Figure 1.

3.4. Model Uncertainty

Uncertainty exists in the model parameters for the Kanai-Tajimi �lter, !g,

�g, and the input variance, �w, which scales S0 in (14). The parameters

describing the design model of the benchmark system are assumed to be

su�ciently accurate to be considered \certain" for estimating the response

in the frequency range of interest. The probability density functions (PDFs)

chosen to model the uncertain input parameters are shown in Figure 2, and

are described as follows:

� !g is log-normally distributed with mean 50 rad/sec and �log!g = 0:2,

� �g is log-normally distributed with mean 0.5 and �log �g = 0:2, and

� �w is log-normally distributed with mean 1.0 and �log �w = 0:2.

The choice of these particular PDFs to model the uncertainty is somewhat

arbitrary. However, the total failure probability does not depend strongly on

the form of the probability models, because the value of the integral in (5)

is determined largely by the integrand's behavior at its peak, provided the

choices for the probability models have the same most-probable values and

similar shapes to their distributions about that point. So, although other

probability models could be considered for the parametric uncertainty, such

as the normal distribution or the �2 distribution, their PDFs would appear

similar in the region of greatest contribution to (5), and hence would yield

nearly identical probabilistic performance levels.
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Spencer et al.1 specify a range of uncertainty for !g and �g, given by

20 rad/sec � !g � 120 rad/sec and 0:30 � �g � 0:75, which is re
ected in

the PDFs that are used. In addition, �w is allowed to vary to represent the

uncertainty in the earthquake intensity. For example, for the two earthquake

records provided, �w is 1.4 for the El Centro record and 1.2 for the Hachinohe

record, where the variance is calculated using the entire duration of the

records. In practice, with a careful study of soil conditions of a structure,

its proximity to major faults, and other factors, the PDFs for these ground-

motion parameters could be modi�ed appropriately to re
ect the local site

conditions. The variables are assumed to be stochastically independent, so

the joint PDF is the product of these PDFs.

3.5. Performance measures

While the probabilistic controllers are designed to minimize the failure prob-

ability of the closed-loop systems, in order to compare this design with other

control methodologies, its \performance" is assessed using the ten evaluation

criteria proposed by Spencer et al.,1 which represent measures of a variety

of response quantities. Evaluation criteria J1 through J5 represent root-

mean-square (RMS) response quantities for the controlled system. These

quantities are normalized by the RMS response of the uncontrolled system

for the \worst-case" Kanai-Tajimi �lter parameters !g and �g with �w = 1,

where \worst" is de�ned in terms of the peak RMS system response over the

range of possible !g and �g. These response ratios are the maximum RMS

interstory drift over all stories (J1), the maximum RMS absolute acceleration

over all 
oors (J2), the RMS actuator displacement relative to the third story

(J3), the RMS relative actuator velocity (J4), and the RMS absolute actua-
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tor acceleration (J5). The quantities J1 and J3 are normalized by the RMS

relative displacement of the third 
oor with respect to the base for the un-

controlled system with !g = 37:3 rad/sec, �g = 0:3, �w = 1, where the RMS

displacement is �x3o = 1:31 cm. Criterion J4 is normalized by the third 
oor

RMS relative velocity, � _x3o = 47:9 cm/sec, and J2 and J5 are normalized by

the RMS absolute acceleration of the third 
oor, ��xa3o = 1:79 g. The RMS

response quantities for the controlled system are obtained via a Simulink18

simulation by averaging the response to 300 seconds of computer-generated

random noise.

Evaluation criteria J6 through J10 represent the peak values of the same

response quantities for the deterministic response of the closed-loop system

to two scaled earthquake inputs, the north-south component of the 1940 El

Centro earthquake, and the north-south component of the 1968 Hachinohe

earthquake. These criteria are normalized by the peak response quantities of

the uncontrolled system for each earthquake. For the El Centro response, J6

and J8 are normalized by x3o = 3:37 cm, J9 by _x3o = 131 cm/sec, and J7 and

J10 by �xa3o = 5:05 g. For the Hachinohe response, J6 and J8 are normalized

by x3o = 1:66 cm, J9 by _x3o = 58:3 cm/sec, and J7 and J10 by �xa3o = 2:58 g.

4. CONTROLLER DESIGN

4.1. Controller class

The following state equations are used to describe the linear control system

Gc,

_xc = Acxc +Bcyc

u = Ccxc

(15)
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where xc contains the states of a low-pass �lter and Bc contains the output-

feedback gains.

Output-feedback controllers are chosen for the control design optimiza-

tion, where the measured absolute acceleration of each 
oor of the benchmark

system is fed back to the controller. Since the primary contribution to the

inter-story drift for earthquake excitations is expected to come from the 
ex-

ible modes of the structure, which all occur below 30 Hz for the uncontrolled

system, a frequency-dependent weighting function is included in the con-

troller that seeks to minimize the structural response in this lower frequency

range and to reduce the control e�ort in the range of the higher frequency

noise and modeling error. The roll-o� frequency for the low-pass weight-

ing function, when speci�ed a priori rather than included in the controller

design, is !b = 30 Hz = 188:5 rad/sec, and the low-pass �lter is a second-

order Butterworth �lter. Therefore, the controller has a state of dimension

2, and easily satis�es the controller dimension limit of 12 speci�ed for the

benchmark problem.1 The controller parameters that are free to be chosen

are the three proportional-feedback gains, K =
n
k1 k2 k3

o
, that multiply

the accelerations from the sensors at 
oors 1, 2, and 3 of the benchmark

system, respectively, and sometimes !b, when this is allowed to vary as a

design parameter.

Four controllers are designed for the AMD benchmark model. The �rst

two, termed the \nominal-model controllers," are designed using the reduced-

order \design" model to minimize the failure probability for a particular

Kanai-Tajimi excitation model. This model uses the parameter values !g =

50:0 rad/sec, �g = 0:5, and �w = 1, which correspond to the mean param-
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eters probabilities (and are close to the most probable ones) for the PDFs

given in Figure 2. The second two controllers, termed the \uncertain-model

controllers," are again designed using the reduced-order design model to min-

imize the total failure probability. These controllers explicitly incorporate the

probability models for the uncertainty of the excitation model parameters !g,

�g, and �w, which were described earlier. The initial guess during the opti-

mization for the uncertain-model control-feedback gains is taken from the re-

sult from the nominal-model controller optimization. For each case (nominal

model and uncertain model), one controller is designed for the three output-

feedback gains using a roll-o� frequency of !b = 30 Hz = 188:5 rad/sec for

the low-pass �lter. The other controllers include this roll-o� frequency as a

design parameter for the controller optimization.

Note that direct output-feedback without a dynamic compensator was

originally considered by the authors. However, satisfactory performance was

not attainable in this case, because the actuator acceleration is too large

due to the higher-frequency sensor noise and modeling error. A study of

the a�ect of the roll-o� frequency for the low-pass �lter on the performance

was also conducted, and lower roll-o� frequencies were observed to reduce

the acceleration requirements for the AMD actuator that constrain the prob-

abilistic performance. Concurrently, the AMD displacements increase, but

they do not begin to constrain the performance until the normalized AMD

acceleration and displacement levels are comparable.

4.2. Failure probability calculation

As shown in (4), the out-crossing rate of a scalar stochastic process is simply

a function of the variance of the response and its derivative. The variances
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of the response quantities are obtained by solving the Lyapunov equation

associated with the closed-loop system pictured in Figure 1. These are sub-

stituted into (4), then the approximate failure probability for each model is

obtained from (3). For the \uncertain-model" controller, the total failure

probability given by (5) is then evaluated using the asymptotic expression9

from (8).

Let Gclp, with inputs w and v and output zp, be the system formed by

the closed-loop inter-connection of Figure 1, so Gclp has the following form,

where the system matrices can be derived from (10), (13), and (15),

_xclp = Aclpxclp +Bclp

8<
:w

v

9=
;

zp = Cclpxclp;

(16)

where xclp =
n
x0c x0r x0f

o0
represents the state of the closed-loop system,

and zp is its output. The covariance matrix of the performance variables is

as follows,

E[zpz
0
p] = CclpRC

0
clp; (17)

where \E" denotes expected value, and

R := E
�
xclpx

0
clp

�
(18)

is the solution to the standard Lyapunov equation

AclpR +RA0
clp +BclpB

0
clp = 0: (19)

The failure possibilities considered for this example include the interstory

drifts, and \failure" occurs when the drift in any one story exceeds the drift
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limit �, where the limit is chosen to be 1.5 cm, or approximately 3% of the

story height in the laboratory structure. In practice, assuming the purpose

of the structural control system is to ensure the safety of a structure and its

occupants, the limiting value for the inter-story drift should correspond to

the displacement level which would cause structural damage, and attaining

a drift ratio of 3% during an earthquake would typically imply some damage

has occurred in a moment-resisting steel frame (similar to the laboratory

structure). Additional failure possibilities for the AMD benchmark model are

that the actuator exceeds the limits of its stroke and its maximum allowable

acceleration. Hence, for the AMD actuator, failure is de�ned to occur when

the required actuator displacement, xm, exceeds its stroke of ��1 = 9 cm, or

when the required actuator acceleration, �xam, exceeds ��2 = 6 g.

Other failure possibilities could be considered for control design of a struc-

ture, such as exceeding the maximum allowable base shear force, exceeding

comfortable acceleration levels in the structure, or for the actuator, exceed-

ing the actuator power or force limits. The control objective can easily be

re-de�ned to represent a di�erent combination of these possible failures.

An illustration of a three-dimensional projection of the failure surface is

shown in Figure 3 (note that the true failure surface is �ve-dimensional for

this problem). The three dimensions pictured are the drifts for the �rst two

stories (d1 and d2), and the actuator displacement (xm). The complete \safe"

region is de�ned by

S :=

8<
: max(jd1(t)j; jd2(t)j; jd3(t)j) � �;

jxm(t)j � �1; j�xamj � �2
for t 2 (0; T ]

9=
; ; (20)

where T = 10 sec. The failure surface boundary, @S, is de�ned by � = 1:5 cm,
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�1 = 9 cm, and �2 = 6 g.

5. RESULTS

5.1. Nominal-model controllers

Controller 1, the nominal-model controller designed using !b = 188:5 rad/sec

and ground-motion parameters !g = 50 rad/sec, �g = 0:50, has the accel-

eration feedback gains K1 =
n
0:0339 0:0538 0:0958

o
(see Table 1 for a

summary of the various controller designs). The ten performance criteria

J1{J10 are listed for this model in Table 2. The criteria J1{J5 are evaluated

by simulating the response of the closed-loop system in Simulink to a sta-

tionary computer-generated \white" signal with variance ��xg = 0:12 g, with

the nominal Kanai-Tajimi �lter parameters !g = 37:3 rad/sec and �g = 0:3,

for 300 seconds duration, then computing the variances of the relevant re-

sponse variables. These quantities J1{J5 are not maximized over the Kanai-

Tajimi �lter parameters !g and �g, as this proves to be too computationally

expensive for the resources available to the authors.

For Controller 2, !b is allowed to vary as a controller design parame-

ter, and the gains K2 =
n
0:354 0:320 0:237

o
are found along with !b =

33:4 rad/sec,. Note from Table 2 that this controller has signi�cantly better

performance than Controller 1. The simulated response of the closed loop

system formed using Controller 2 to the scaled NS component of the 1940

El Centro earthquake is displayed in Figure 4, and to the NS component of

the 1968 Hachinohe earthquake in Figure 5. For comparison, the El Centro

record, as well as the response of the uncontrolled system to that input, are

shown in Figure 6. The Fourier amplitude spectra of the �rst-story drift
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response of both the controlled and uncontrolled system when subject to the

El Centro input are shown in Figure 7, where the attenuation of the �rst two

modes of vibration by the controller action is apparent.

The controller is successful in reducing the inter-story drifts, as the max-

imum drift calculated for the controlled system during the El Centro earth-

quake is 1.17 cm (compared to 2.09 cm for the uncontrolled system), and

only 0.631 cm of drift is achieved during the Hachinohe earthquake (versus

0.958 cm for the uncontrolled system). The maximum actuator displace-

ments which are found for these inputs are 4.46 cm and 2.69 cm, and the

maximum accelerations are 4.22 g and 2.39 g. For the earthquake inputs, the

maximum response ratios J6{J10 given in Table 2 occur during the Hachi-

nohe earthquake. The maximum actuator displacements, accelerations, and

input voltages, as well as the RMS values of these quantities, all satisfy the

constraints for the AMD benchmark actuator1 for Controller 2 (note that

the maximum actuator acceleration of 6 g is exceeded for Controller 1).

5.2. Uncertain-model controllers

Controllers 3 and 4 are designed for the uncertain model to explicitly pro-

vide robustness to parameter variations in the excitation model, where the

PDFs for the uncertain variables are shown in Figure 2. Given a particular

controller, the total failure probability is obtained through an asymptotic

approximation to (5). This result is minimized over the space of acceler-

ation output-feedback controller parameters, with !b = 188:5 rad/sec for

Controller 3 while !b is free to vary for Controller 4.

The feedback gains for Controller 3 are K3 =
n
0:0454 0:0576 0:126

o
and for Controller 4, with !b = 33:1, K4 =

n
0:431 0:291 0:235

o
. The ten
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performance criteria J1{J10 are again shown in Table 2. The response of the

closed-loop system for Controller 4 appears quite similar to that shown in

Figures 4 and 5, so it is not repeated here. Again, the maximum actuator

displacements, accelerations, and input voltages, as well as the RMS values of

these quantities, all satisfy the constraints for the AMD benchmark actuator1

for Controller 4, but the maximum actuator acceleration is exceeded for

Controller 3.

The total failure probabilities can be calculated for both the uncertain

model controllers and the nominal model controllers using the PDFs for

the parametric uncertainty shown in Figure 2 and modeling the input as a

(�ltered) stationary white-noise process. The duration of the time interval for

the failure probability calculation is taken to be 10 seconds, yielding a failure

probability of Pf1 = 20:2% for Controller 1, Pf2 = 0:082% for Controller 2,

Pf3 = 18:5% for Controller 3, and Pf4 = 0:081% for Controller 4, compared

to Pfunc = 75:2% for the uncontrolled system (recall these are likely to be

over-estimates of the \true" failure probabilities, as they are upper bounds

given by the sum of the failure probabilities for each failure possibility).

6. CONCLUSIONS

A consistent application of probability theory to the control of uncertain

systems leads to the probabilistic robust control methodology outlined herein.

Both the uncertainty in modeling the physical system as well as a reliability-

based performance objective can be incorporated into the robust controller

design.

The controllers that are designed for the AMD benchmark model achieve

signi�cant reductions in the failure probability of the controlled systems rel-
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ative to the uncontrolled one, where the failure probability is found from

the inter-story drifts and the AMD actuator stroke and acceleration for this

example. The benchmark controller constraints on the actuator command

signal, acceleration, and displacement are satis�ed for the two \good" con-

trollers and nearly satis�ed for the other two.

One comment on the possible controller class for the system is that any

parameterized controller could be considered for the problem, such as an

output-feedback controller with a state estimator or a nonlinear controller.

The only limit on the controller class is the e�ciency of the optimization

algorithm and the speed of the computer. A more complicated controller

class, such as one containing a state estimator, might be expected to improve

performance. This is a topic for further research.

A shortcoming of the approach that is presented is that the computa-

tion time required to solve the control design problem is signi�cant for the

uncertain-model controller (i.e., 1-2 hours of CPU time for the controller de-

signs presented previously, running Matlab on a DEC/Alpha 3000 Work-

station). While this is not a problem during the actual implementation of

the controller, as the controller design is performed \o� line," it does slow

down the controller design process. Another area for further research is

to explore whether alternative probability-based performance objectives and

uncertainty descriptions can be found that would lead to more e�cient solu-

tion algorithms. Also, as experience is gained with this probabilistic analysis

approach, more e�cient computational procedures that can exploit the struc-

ture of a particular problem are likely to be developed.
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Table 1: Controller parameters used for performance evaluations.

Name
!b k1 k2 k2

(rad/sec)

Controller 1 188:5 0:0339 0:0538 0:0958

Controller 2 33:4 0:354 0:320 0:237

Controller 3 188:5 0:0454 0:0576 0:126

Controller 4 33:1 0:431 0:291 0:235
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Table 2: Controller performance under various evaluation criteria.
Controller Number

Nominal Robust
Performance 1 2 3 4
Measure Fixed !b Optimal !b Fixed !b Optimal !b

Mean
Square
Response

J1 0:314 0:208 0:292 0:207
J2 0:510 0:345 0:473 0:345
J3 0:601 0:841 0:664 0:851
J4 0:598 0:823 0:659 0:832
J5 0:967 0:676 0:996 0:683

kxm(t)k2 (cm) 0:79 1:10 0:87 1:11
k�xam(t)k2 (g) 1:73 1:21 1:78 1:22
ku(t)k2 (V) 0:15 0:29 0:18 0:30

Maximum
El Centro
Response

J6 0:423 0:347 0:401 0:345
J7 0:687 0:536 0:671 0:535
J8 0:659 1:324 0:772 1:341
J9 0:634 1:186 0:722 1:200
J10 1:239 0:836 1:298 0:859

kxm(t)k1 (cm) 2:22 4:46 2:60 4:52
k�xam(t)k1 (g) 6:26 4:22 6:56 4:34
ku(t)k1 (V) 0:51 1:25 0:62 1:26

Maximum
Hachi-
nohe
Response

J6 0:483 0:380 0:467 0:380
J7 0:785 0:687 0:733 0:684
J8 0:729 1:618 0:858 1:644
J9 0:755 1:524 0:895 1:558
J10 1:225 0:928 1:308 0:936

kxm(t)k1 (cm) 1:21 2:69 1:42 2:73
k�xam(t)k1 (g) 3:16 2:39 3:37 2:41
ku(t)k1 (V) 0:31 0:75 0:36 0:76

Pf 20:2% 0:082% 18:5% 0:081%
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Figure 1: Closed-loop interconnection for controller design.
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Figure 4: Structural response using Controller 2 to the El Centro earthquake.
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Figure 5: Structural response using Controller 2 to the Hachinohe earth-

quake.
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Figure 6: Scaled El Centro Earthquake excitation; response of the uncon-

trolled AMD model.
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Figure 7: Fourier amplitude spectrum of the �rst-story drift, controlled (with

Controller 2) and uncontrolled systems, El Centro earthquake input.
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