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SUMMARY

A benchmark structural control problem has been proposed ! in an attempt to evaluate the
effectiveness of various control algorithms. The problem encompasses the design of an active
mass damper (AMD) control system for a multi-degree-of-freedom (MDOF) building type
structure subjected to earthquake-type excitation.

In vibration control for civil structures, linear quadratic optimal control is among the most
popular techniques. Normally, this approach ignores the external excitation in the time-domain
design process. In addition, this technique requires a full-order dynamic observer which is often

unattainable. This paper focuses on the development of a new optimal control algorithm which
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includes the earthquake-type excitation explicitly in the design of control systems and the use
of prescribed-order, output feedback controllers. In addition, this approach allows the inclusion
of open-loop (feedforward) as well as closed-loop (feedback) control terms in the controller
design.

The authors have previously designed an algorithm for full state feedback controllers trained
on an ensemble of earthquakes.z A cost functional is minimized on an ensemble of *known’
earthquakes, using analytic gradient information, in order to determine constant control gains.
The gradients are obtained in explicit form. The control system is then validated by testing on
"unknown’ earthquakes.

The algorithm is now modified to develop a prescribed-order, output feedback controller for

a specific MDOF system model.

INTRODUCTION

Substantial research efforts have focused on the analysis and design of active control systems
for civil structures subjected to seismic excitation. The works of Soong >+, Yang 3, and Kobori
S, present a compilation of recent progress in active control research. One of the most popular
design techniques, linear quadratic optimal control, usually ignores the effect of the earthquake
excitation on the time-domain design of the controller. By neglecting the external disturbance,
linear quadratic optimal control theory reduces to the solution of the classic Riccati matrix
equation. Techniques to solve this equation are quite well developed’. The results are closed-
loop controllers optimized without regard to the anticipated excitation. Retaining the external
excitation in the optimization process requires that the time-history of such an excitation be
known a priori, since the corresponding matrix equation must be solved backwards from

some final time. In seismic analysis of structures, it is problematic to include the earthquake



excitation since the next earthquake is not known in advance. However, time-histories of
ground accelerations from prior earthquakes are known. Hence, these could be used to train
the control system by explicitly including such ground motion representations in the control
design algorithm. In addition open-loop control terms designed to cancel part of the incoming
excitation can be included in the optimization process, yielding closed-open loop controllers.

The authors have previously presented 2 an efficient formulation to include the effects of
the forcing function directly in the development of control systems. This design process yields
controllers with feedback (closed-loop) and feedforward (open-loop) terms, whose gains are
optimized by training on an ensemble of earthquakes. The formulation was based on a full state
feedback approach.

The present work represents an extension of the previous approach 2 to include the effects of
the earthquake-type external excitation in the design of the control systems for MDOF structural
models in which full order state feedback is unachievable.

Structural control problems present many difficulties in the areas of modelling and
measurements. The proposed benchmark study ! attempts to address implementation issues by
requiring the use of a prescribed (reduced)-order, output feedback controller in the design of an
AMD control system for a three story model building subjected to earthquake-type excitation.
This is directed towards two problems in particular. First, it is problematic to measure the entire
state for a large system subjected to earthquake excitation. The lack of an inertial frame makes
displacement and velocity measurements difficult. The benchmark study instead restricts the
measurements to the absolute accelerations of the structural masses, the position of the control
actuator piston, and the absolute acceleration of the control mass. This requires the use of
output feedback controllers. In addition, since it can be easily measured, the absolute ground
acceleration is included in the output measurements. Second, the benchmark study presents a
28 state structural model but requires the use of a prescribed order-controller (compensator) that

has at most 12 states. This is an attempt to limit on-line computational requirements.



Linear quadratic optimal control generally requires the use of a full-order dynamic observer.
An estimator may be used to reconstruct the state from measurements. This estimator is
typically of the same order as the state, and for large scale problems this quickly becomes
troublesome. The most popular approach to this difficulty is the use of truncation or model-
reduction methods. An attempt is made to produce a reduced-order model which accurately
represents the system. Then an estimator and a controller are designed to control the reduced-
order model. One can only hope that this controller, when applied to the full-order system,
results in good structural behavior. If not, as often happens, additional steps must be taken
to improve the controlled systems behavior. There is no a priori reason to separate the model
and the control problem. Kabamba and Longman 8° have shown an integrated formalism
to optimize the closed-loop behavior of such systems. This study attempts to synthesize the
inclusion of the excitation and open-loop controllers with this integrated formalism.

The current approach is to include the effects of a prescribed-order controller, and the use of
output feedback, as opposed to full state feedback, in a linear quadratic optimal control design
including the external excitation. Both feedback and feedforward terms are included in the
controllers, whose gains are optimized by training on a set of known earthquakes. The proposed
method will use known earthquake records to design an optimal controller whose control gains
are constant and can be precalculated. The controller, having been designed with the knowledge
of previous earthquakes, should be able to provide superior performance during an arbitrary

future earthquake.

PROBLEM DEFINITION AND STATE SPACE EQUATIONS

The physical structure for the benchmark problem is an actively controlled, three story, single-

bay, model building. The model has an active mass damper attached to the third floor. An



evaluation model is presented by Spencer et al.! as a high-fidelity, linear, time-invariant 28
state space representation of the input-output model for the physical structure. The model is

presented in continuous time as follows:

x(t) = Ax(t) + Bu(t) + EZ,(¢t) (1)
y(t) = Cyx(t) + Dyu(t) + Fyiy(t) + v(t) (2)
z(t) = C,x(t) + D,u(t) + F,Z,(t) 3)

where x is the state vector, u is the scalar control input, i, is the scalar ground acceleration,
Y = [Zm, Ta1, Ta2, £a3, Eam, E4]7, is the vector of responses that can be directly measured, and
Z = [T1,Z2,23, Tm,T1, T2, L3, Tpy La1, $a2, Ta3, Tam] T, 18 the vector of responses that can be
regulated. The matrices A, B, E, C,, D,, F,, C,, D., and F,, are given for the benchmark
problem. The vector v represents noise in the measurements. Eq. (1) represents the state
space equations of motion, while eq. (2) and eq. (3) are the output equation and the controlled
response equation, respectively.

For this benchmark study, the earthquake excitation #,(t), is modeled in both the time
domain and the frequency domain. In the time domain, two acceleration time histories from
previous earthquakes are used, the 1940 El Centro NS record and the 1968 Hachinohe NS record
. In the frequency domain the excitation is modeled as a stationary random process with a
spectral density defined by the Kanai-Tajimi spectrum, with a constant rms value of the ground
motion.

The control problem is to design a discrete-time feedback compensator of the form:
xi-}-l = fl (XZ’ Yk, ug, k) (4)
up = fa(XE, Yi, k) 5)

where x5, yx, and u; are the discrete state vector for the compensator, the discrete output

vector, and the discrete control command respectively, at the time ¢ = kAt. In this problem,
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the dimension of the vector x is limited up to 12 (dem(x¢) < 12).

DISCRETE STATE SPACE EQUATIONS

However, since all the earthquake data is in discrete form and controller must be implemented
in discrete form, it is more appropriate to formalize the proposed approach directly in discrete
time. In a discrete time formulation, if the sampling time is relatively small, a zero order hold
on the earthquake input and the control command can be satisfactorily assumed. In this case,
the equations of motion eq. (1), the output equation eq. (2), and the controlled response vector

eq. (3), are now expressed as:

Xpy1 = Agxg + Byug + Egigr, x(k=0)=0 (6)
Vi = Cyx + Dyup + FyZgr + vi @)
Zr, = szk + Dzuk + Fz:‘igk (8)

where x;, ug, and 4 represent the discrete state vector, the discrete scalar control force, and the
discrete scalar ground acceleration, respectively, at the time ¢ = kAt. The structure is assumed
to be at equilibrium before the earthquake starts.

The authors have previously shown in detail the well-known parallelism between the
continuous and discrete time formulations?. For details, the reader is referred to the previous
work of the authors? or to the work of Meirovitcht. In summary, the discrete system matrix A4,
the discrete controller location matrix B, and the discrete external excitation location matrix

E, can be obtained from their continuous time counterparts by the following transformation:t:

Ay = At 9)
At

B, = / eAdr B (10)
0]
At

E, =/ eATdr E (11)
0



These transformation relations correspond to the zero-order hold assumption for the control
force and for the external excitation. In this case, equations (6), (7) and (8) become the exact
discrete time representation of the equations (1), (2) and (3). The assumption of zero-order hold
is certainly valid for digital controllers since their action is implemented at discrete time only.
For the external excitation term, if different interpolation schemes are used (linear, quadratic,

etc.), different expressions for eq. (11) are obtained.

PRESCRIBED ORDER AND OUTPUT FEEDBACK CONTROLLERS

To begin the design process, a discrete time controller which includes output feedback and
acceleration feedforward terms is chosen. A size for the compensator is prescribed (dim(x°) =
10) to meet the benchmark limits, dim(x¢) < 12. In this case the deterministic controller is

represented as follows (v = 0):

Xiy = Dx; + Fey, x%(k=0)=0 (12)

up = G°xS + Li g (13)

Note that no attempt will be made to have the prescribed-order compensator accurately
model the full-order system behavior. Instead, only good behavior from the controlled system
as a whole is sought. All the matrices defining the controller (D¢, F¢, G°, and L¢) are treated
as unknown; their values are determined by the optimization process.

Since a deterministic approach is followed in the design process, the controller is designed
considering no sensor noise (v; = 0). However, when testing the proposed controller for the
benchmark problem using the given SIMULINK model, measurement noise has been included
(rms noise of 0.01 Volts, as required). Indeed, all the benchmark requirements are met by

using the discrete controller (designed with the discrete state space model) in simulations with
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the continuous state space SIMULINK model given in the benchmark problem. This includes
A/D and D/A conversions (12-bit precision, &= 3 V.), the sampling period (0.001 sec.), and the
time delay (200 u sec.) as described by the benchmark literature. The controller is directly
substituted for the reference controller in the benchmark simulations with the single exception

that the new controller includes feedback from the entire output vector y(t).

AUGMENTED DISCRETE STATE SPACE

In order to derive an optimal solution for the controller, a new augmented discrete state vector,
which is composed of the discrete system state vector x; and the discrete compensator state
vector x§, is defined. Such a new state vector will include the dynamics of both the structural

system and the controller. Using egs. (6), (12), and (13) the augmented discrete state can be

Xk+1
Xii1 F°C, D°¢+F°D,G*® F°D,L¢ + F°F,
The augmented discrete state vector X is defined and the unknown matrices D¢, F°, G,

written as:

Xk B,L°+ E,

+ -:i:gk (14)

Ay B.G*¢ ]

[+
X

and L¢ are collected as follows:
Xk Oly G¢ Le
X = ,  P= , L= (15)
x5 F¢ D¢ 0,c1
in which the matrix 0;; is the zero matrix of dimensions ¢ x j. Itis important to point out that the
matrix P contains all the information about the prescribed-order compensator and the closed-
loop control gains, while the matrix L includes the open-loop control gains.
In order to simplify the lengthy mathematical derivations, let’s define the additional known
matrices, A4, By, C,, ﬁy, Fy, Eq4, 1, and ®,, as follows:
R Ad Ol‘zc Bd Ozzc R Cy nyc R Dy Oyzc
A;= ,C ,Dy =
Ol‘cx I.’L'C OIL‘C]_ Oxcxc

09:‘:1: 0:1:51:“ 01“1 I:L'C
(16)

aBd:




Eq

A

N Fy Oxl Oxxc Oya: nyc
F, = yEq = , @1 = o, = an

ozcl Ozcl Ozcl Izc Ozcx Ia:c
in which the matrix I, is the identity matrix of dimensions ¢ x z. This allows one to collect terms

and rewrite the augmented discrete state space equations of motion, using egs. (14), (15), (16),
and (17), as:

ik+1 = A;)A(k + E;figk (18)

where the two new matrices, A and EJ, are defined as:

A: =[A,; +B,PC, + &, PD P®,], E;=[E;+ o PF,+[0,PD, +B,L] (19

LINEAR QUADRATIC OPTIMAL CONTROL

In order to use an optimal control approach, it is necessary to define a discrete cost functional
that includes the appropriately weighted variables which are critical to the problem. For this
problem, such variables are the vector of responses that can be regulated z,, and the applied
control force uy are chosen. Minimizing this discrete cost functional with respect to the control
and the state, constrained by the appropriate equations of motion, defines an optimal solution
12,13, For this problem, the form of the controller is known a priori, as presented in egs. (12)
and (13). Hence, it is necessary to define a quadratic discrete cost functional J;, which will
be minimized with respect to the control matrices P and L, constrained by the augmented
discrete state equations of motion, eq. (18). Since the form of the controller and the external
excitation are known a priori, this optimization problem reduces to a parametric optimization for
the control matrices. The formalism will first be derived for a single known external excitation,

then extended to include an ensemble of earthquake records.



DISCRETE COST FUNCTIONAL
Let’s define a discrete quadratic cost functional as:
N
Jg = Z{ZzQZk + ufRuk} (20)
k=0

where Q and R represent appropriate weighting matrices. The optimization problem can be

stated as follows:

min(Jy) (21)
subject to: Xxy1 = AjXx + EjZ g (22)
k=0,1,...,N; N =ts/At (23)

where t; represents the final duration of the dynamic analysis. Such a final time should be
sufficiently longer than the duration of the earthquake excitation so that, if any instability effect
is present, the optimization process will be able to recognize it and to take corrective action.
However, the cost functional must now be written only in terms of the augmented discrete
state vector X, and the external excitation 7. By inserting the equation for the controller, eq.
(13), into the equation for the discrete regulated response vector, eq. (8), and defining two new
known matrices, C, and D,, the regulated response vector can be expressed in terms of the

augmented discrete state vector and the external excitation as follows:

A A

Cz = [Cz Ozc] 3 Dz = [Dz Ozc] (24)

zi = [C, + D, P®;)%; + [D.L + F,]i (25)

In addition, after some mathematical manipulations, the second term in the discrete cost

functional, uf Ruy, can also be represented in terms of the augmented discrete state vector and
the external excitation as:

wIRuy = XTOTPTRP ®, %) + 2XLBIPTRLZ  + 5,4 L RLZ (26)
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where:

A R O
R = (27)
01:‘:1 0@:"1‘"
Using egs. (25) and (26) the discrete cost functional J4, (eq. (20)), becomes:
N
Ji =D [RiQuRi + 2R[ Qo gk + £, Qaigh] (28)
k=0
in which:
Q; = €7QC, + 2CTQD.P®, + IPTDTQD,P®, + ®IP'RPO, (29)

Q. = C7QD.L + CTQF, + ®IP"D7QD,L + $7P"D?QF, + ®IPTRL  (30)
Q; = L’D7QD,L + 2L°D?QF, + FT'QF, + L’RL (31)

From equation (28) it is clear that the discrete functional J; is now a functionof the unknown

control matrices P and L and of the discrete augmented state X.

AUGMENTED DISCRETE COST FUNCTIONAL AND CONDITIONS FOR
OPTIMALITY

In the proposed optimal control approach, it is necessary to constrain the discrete cost functional
Jy (eq. (28)) by the augmented discrete equations of motion, eq. (18). This is accomplished
by the use of Lagrange undetermined multipliers A;. These multipliers, often called costate
vectors, allow the construction of an adjoint discrete cost functional J4,, defined as:
N
Jp = kz% [3TQuR; + 2% Quigr + 55 Qo + ML[ATRE + Ejige — Kipal}  (32)
where ), the discrete costate vector, has the same dimensions as the augmented state vector

X;. The term multiplied by Ax in Jy, is identically equal to zero at all times so that the value of
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the adjoint discrete cost functional is identical to that of the original functional. However, the
value of the first variation of the functional is changed.

A properly defined adjoint discrete cost functional in terms of the augmented discrete state
and the external excitation is now obtained and the problem expressed in egs. (21), (22), and

(23) is now reduced to a standard form:

min(Jza) (33)

?

Since the cost functional has been reduced to the above compact form, the necessary conditions
for optimality are equally compact. These conditions can be derived by setting the first variation
of the adjoint discrete cost functional J;, with respect to the control and state equal to zero & 9. In
a discrete time formulation, the augmented cost functional can also be considered as a function
of discrete variables (\;, X;, P and L), which are assumed to be uncorrelated, and the optimality

conditions are simply reduced to:

0Jua . .
7, =0 j=0,1,...,N (34)
é"{““:o ij=1,....N (35)
aX]'
Ol _ (36)
aXN+1
aJda _
—p =0 (37)
aJcla. _
r =0 (38)
GOVERNING EQUATIONS

Discrete State and Costate Equations
In a discrete time formulation, the necessary conditions for optimality generate a series of

difference equations. From the first necessary condition, eq. (34), the augmented state space
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equations of motion are recovered. Since the initial conditions for these equations are given,

they can be solved forward in time to obtain the augmented state time history:

)A(k_i_l = A;f{k + E;igk (39)
k=0,1,.. N (40)
% =0 (41)

From the necessary conditions expressed in egs. (35) and (36), a series of difference equations
for the costate vector A and final conditions at k = N are obtained, so that the following

equations can now be solved backwards in time to obtain the costate time history:

Me—1 = A5 A+ [Q1 + QT 1Rk + 2QaZ gk (42)
k=1,....N (43)
AN =0 (44)

It is important to note that these equations can now be solved backwards in time because the
external excitation is recorded from a prior earthquake.
Explicit Gradient Equations
The final two necessary conditions, eqgs. (37) and (38), lead to explicit gradient equations
for the adjoint discrete cost functional Jy, with respect to the control matrices P and L. The
structure of these equations encourage the use of numerical solution techniques that use explicit

gradient information to obtain a minimum of Jy,:

aJda
oP

N
= Y [2{D?Qz; + R[P®:%; + Li 4] }%1 07 + BIN&[C?
k=0

+DTPTOINKI®T + OTMKIOTPTDT + &7\ 27 [FT + L7DI]] = 0 (45)

aJ a a - o A « o A LY -
afi = 3" 12{D7Qz + R[P®;%; + Lii]}é%, + [DIPOT + BINED] =0 (46)
k=0

The governing equations (eqs. (39)—(44)) define a two-point boundary value problem since

initial conditions for X, are prescribed at £ = 0, while the final conditions for Ay are given
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at k = N. The discrete state equations for X, are independent of the discrete costate vectors,
while the costate equations for A contain the discrete state vectors explicitly. Therefore, it is
possible to solve the discrete state equations forward in time first and then solve the discrete
costate equations backwards in time to obtain the complete time histories for both.

Solving the previous system of equations, i.e. minimizing Jy,, generates a solution for
the unknown matrices P and L, representing the solution of the problem. This development
has designed a controller optimized over a single known earthquake record. However, since
the controller must work well for any future earthquake, we will train the controller over an
ensemble of earthquakes. This is done in an attempt to capture the essential characteristics
necessary for the controller to perform well during any future earthquake. Such a controller

can be considered as a “global” optimal control system for a set of known earthquakes.

MULTIPLE EARTHQUAKES

The previous solution is now extended to include an ensemble of earthquake records. The
idea is to choose one set of values for the control matrices P and L that is optimized over an
entire ensemble of known earthquakes. If such an ensemble contains p records, then a new
problem can be formulated by defining a new augmented discrete cost functional J;, which
is the summation of the augmented discrete cost functionals for each of the p earthquakes. The

multiple earthquake augmented discrete cost functional J}, is now written as:
p .
!
Jia = Y Jaa 47
=1
in which the augmented discrete cost functional for each earthquake is now expressed as:

N
T = S {5 Quil + 28 Qo + 85,Quih + AL [AIKL + B3, — L]} 48)
k=0

14



where the index ¢ denotes the individual earthquake and runs from 1 to p.

The new problem statement can now be formulated as:

min(Jg,) (49)

It is then necessary to find the minimum of this newly defined quadratic cost functional with
respect to a single set of control gains. In this way, one can obtain one set of values for P and
L that have been optimized over an ensemble of earthquakes and shoud assure good structural
behavior for an arbitrary future earthquake.

By considering the augmented cost functional as a function of independent discrete
variables, the discrete time necessary conditions for optimality are derived by setting the first
variation of the multiple earthquake discrete augmented cost functional J;, with respect to the
control and the state equal to zero &9 14:

0Jy,

P =0 i=0L. N (50)
o, .
Pds 9 j=1,... 1
G =0 J=LooN (51)
!
Ol _g (52
IRy 41
o,
e = 0 (53)
o,
51 =0 (54)
withi=1,...,p.
GOVERNING EQUATIONS

Discrete State and Costate Equations
The necessary conditions for optimality generate p sets of equations, one set for each of the p

earthquakes in the ensemble. From eq. (50) discrete state space equations of motion for each

15



earthquake record are recovered. The initial conditions for each of these equations are identical
and given. These equations can then be solved forwards in time to obtain all the discrete state

time histories:

X1 = AL} + Ejil, (55)
k=0,1,...N, i=1...p (56)
% =0 (57)

Similarly to the single earthquake case, difference equations for the discrete costate vectors AL
and final conditions at k=N are obtained for each earthquake time history by using eqs(51) and
(52):

b1 = AT+ Qo+ QIR +2Qqit, (58)
k=1,...,N, i=1...p (59)
Ay =0 (60)

It is noteworthy that, in the training process, all the earthquake time histories included in the
ensemble are known a priori. Hence, eqgs. (58) can be solved backwards in time to obtain all
the discrete costate time histories.
Explicit Gradient Equations
The final necessary conditions, egs. (53) and (54), lead to explicit gradient equations for
the multiple earthquake augmented discrete cost functional J}, with respect to the control
matrices P and L. Note that only a single gradient equation is generated for each control
matrix, independetly from the number of earthquakes in the ensemble. This is a direct result
of asking for a single set of control gains optimized across the entire ensemble; therefore, for
any number of different earthquakes in the ensemble, the solution should converge to a single
optimal solution associated with a single set of control gains.

The form of these equations encourages the use of numerical solution techniques that use

16



explicit gradient information to obtain a minimum of J},:

043,

= E Z[z{DTsz + R[P®,%. + Lxgk]} +BIXKT CT + DIP7OT A % R @7
i=1 k=0
+OTALRY OIPTDT 4 0T E [FT 4+ L7DT)] = (61)
oJ, L T
i =22 [2(DIQe} + RIPR, + Lij, ]}, + [DJPO] + BNil =0 (62)
i=1 k=0

The structure of the multiple earthquake solution is analogous to the single earthquake case
with the exception that, while one set of discrete state and discrete costate equations is recovered
for each earthquake, only a single gradient equation is generated for each control matrix. This
is the result of requiring a single set of control gains which are optimized over the set of p
earthquakes.

In this class of problems related to seismic excitation, stability of the resulting control
systems is assured by the fact that 1) the earthquake excitation is a very rich excitation, 2)
we use an ensemble of earthquakes, and 3) the final time exceeds the duration of each of the
earthquakes in the ensemble. In theory, it is conceivable that the algorithm could converge to
an unstable feedback control law having the property that an unstable mode or modes vibrate
exacly opposite to the earthquake. However, the complexity of the earthquake excitation makes
such a cancellation very difficult. It becomes essentially impossible when we consider an
ensemble of earthquakes. In addition, any instability is suppressed in the optimization process
when it becomes dominant after the earthquake excitation ends. As a result, the control gains
will produce an asymptotically stable system having all closed loop eigenvalues within the unit
circle.

The proposed control algorithm has a natural extension for time-varying systems, which

yields time-varying control gains.
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ANALYSIS OF THE RESULTS

The proposed algorithm was used on the AMD controlled system from the benchmark problem.
The physical structure is represented by a time invariant, 28 state space linear model, egs. (1),
whose system matrices are provided by Spencer et al !. A 10th order compensator, egs. (12),
was selected, where the output feedback measurements included the entire vector of responses
that could be directly measured, y = [Tm, a1, Za2, £a3, Tam, L) -

The merit of the controller has been based on criteria given in terms of both rms and peak
response quantities. Ten nondimensional performance indices, J; (z = 1, 2,..10) were provided,
the first ﬁ\‘/e of which were in terms of rms responses while the remaining five were in terms of
peak responses. Superior performance of the controller is indicated by smaller values of these
performance indices. In addition, limitations on the actuator’s acceleration, displacement and
voltage were imposed in both the frequency and time domain (Table 1).

For the evaluation criteria in the frequency domain, the earthquake excitation Z, has been
represented as a stationary random process, with a spectral density function represented by the
Kanai-Tajimi spectrum. The values of the frequency w, and damping ratio ¢, corresponding to
the worst-case condition were observed to be near those for the open-loop system; thus RMS
evaluations were performed at the nominal @, = 37.3 rads/sec and ég =03 (auration of 300
secs.). For the evaluation criteria in the time domain, two recorded time histories of the ground
acceleration (El Centro 1940 NS and Hachinohe 1968 NS) have been provided. Since only two
known earthquake time histories were given as part of the benchmark study, it was decided to
train the controller over a single "known’ earthquake (Hachinohe 1968 NS) and test over a single
"unknown’ earthquake (El Centro 1940 NS). This allowed us to maintain the rigid distinction
between ’known’ earthquakes used to train the control systems and *unknown’ earthquakes used
to simulate the future behavior of the controlled structure. However, the condition of training

the controller just over a single known time history represents a limitation for the controller
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to capture the essential characteristics necessary to perform well during an arbitrary future
earthquake.

Several controllers were designed by varying control and state weighting matrices in
the proposed cost functional. For the numerical minimization process, a quasi-Newton
optimization algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method was
used. The results are presented in tables 2, 3, 4 and 5 where the performance indices and the
rms and peak values of the actuator’s acceleration, displacement and voltage are presented. For
the performance indices in the time domain, the values corresponding to the two time histories
(El Centro and Hachinohe) are reported so that we can keep the duality between “known” and
“unknown” earthquakes, crucial for our approach. We include the results from the Hachinohe
earthquake for completeness with respect to the benchmark study, and also to indicate that even
for a "’known’ earthquake it is impossible to cancel out the disturbance completely if there is a
limitation on control actions. The effectiveness of these controllers is also compared with that

of a reference controller proposed in the benchmark literature.

The first controller (table 2) is obtained by considering the weighting matrices Q
and R such that Q(1,1) = Q(2,2) = 9@3,3) = 0(12,12) = 1 while R = 12. It is
noteworthy to point out the advantage that, although the proposed approach sonsiders a
reduced—-order controller, weights are imposed on elements of the vector z which are
quantities directly related to the full-order structural model. Fig. 1 presents the discrete
transfer functions between the ground acceleration and the floor accelerations
for the controlled structure. The results show the effectiveness of the proposed controller.
Compared to the reference controller, the performance indices associated with the structural
response (Jy, J2, Js, J7) present an increment which varies from 1 to 18 percent while the
indices associated with the control resources (Js, Jy, Js, Js, Jo, J1o) drastically reduce up to

60 percent. Looking at the summation of all the performace indices, the proposed controller
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presents a reduction of the order of 10 percent. All the maximum values of the actuator’s
acceleration, displacement and voltage are well within the limits imposed by the study.
Similar results are obtaining for controller 2 (table 3) and controller 3 (table 4). In controller
2, the relative weights of control action and structural response are varied in an attempt to reduce
the required control effort. A weighting matrix @ with @(1,1) = Q(2,2) = Q(3,3) = 1,
0(12,12) = 2 is used while the weight associated with the control forces is R = 25. In this
case, the results confirm the effectiveness of the proposed controller, with a more evident

reduction in the control effort offset by an increase in the structural response.

In controller 3 (table 4), attention is given toward a further reduction in structural response.
The weighting matrices ) and R have now the following values: Q(1,1) = Q(2,2) =
Q(3,3) = 1, Q(12,12) = 3 and R = 9. In order to meet the constraints on the acceleration
of the AMD, it is necessary to increase the associated weight in the cost functional (Q(12, 12)).
This, again, illustrates the advantage of including the entire vector of regulated responses in
the definition of the cost functional and confirms the validity of the proposed approach and
its flexibility in the trade—off of structural response and control force. Compared to those
obtained for the reference controller and with the previous two controllers, the performance
indices associated with the structural response show a substantial improvement of the order
of 25 percent with respect to the previousicontroller. As expected, the required control force
increases, as shown by the values of the performance indices Jz—Js and Js—J1o.

Figs. 2 - 4 show the performances of these proposed controllers in reducing the structural
vibrations for the case of an unknwon “future” earthquake (El Centro). These figure confirm
the effectiveness of the proposed control algorithm.

A fourth controller (table 5) is designed in an attempt to further reduce the structural

response so that the associated performance indeces are lower than those provided for the
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reference controller. This task is accomplished by increasing the values of the weighting matrix
Q(Q(L1) = 1.2,Q(2,2) = 3.6, Q(3,3) = 1.2, Q(12,12) = 3.8). As shown in table
5, the performance indices associated with the structural displacements and accelerations are
slightly reduced with respect to those obtained for the reference model, with the exception
of J; which is almost identical (0.7102 vs. 0.7180). On the contrary, some of the
performance indices associated with the control force present values that are higher than
those corresponding to the reference model. Looking at the global controller performance
obtained by adding all the performance indices, such a proposed controller is performs
slightly better than the reference one. In selecting all the worst performance indices for

the proposed controller, values from both the unknown earthquake (Hachinohe) and the

known earthquake (El Centro) have been used. All the restrictions imposed on the actuator’s
acceleration, displacement and voltage are satisfied.

The effectiveness of such a controller is confirmed by fig. 5, where the transfer functions
between the ground acceleration and the acceleration of the three floors present a significant
reduction of the peak values compared to the case where no active control force is applied. Figs.
6 and 7 show the controller performances in controlling the displacements and the accelerations
of a structure subjected to an unknown ground excitation (El Centro earthquake).

The four example controllers explicitly show the potential trade-offs between structural
response and control action. By changing the values of the weighting matrices ¢ and
R, it is possible to obtain controllers which determine excellent structural behavior within
the constraints associated with maximum control force and maximum actuator voltage and
acceleration. All the proposed controllers are asymptotically stable, presenting all the closed
loop discrete eigenvalues within the unit circle. Such controllers have the longest time constant
ranging from 0.1186951 (controller 1) to 0.118669 (controller 4), corresponding to a range of
maximum eigenvalues from 0.99988131 to 0.999881337. These represent the amount of decay

in one sample time (At = 0.001 sec.). In performing the stability analysis, the augmented
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system, including the dynamics of the structure and of the controller, must be considered. These

results also confirm the conclusions of the study presented in °.

CONCLUSIONS

The results presented in this study confirm the effectiveness of the proposed control algorithm
for the analysis of MDOF systems subjected to earthquake excitation. The attempt to synthesize
the inclusion of the external excitation and open—loop control term with the integrated
formalism for the control and modelling problems has proven successful. In this way, all the
problems associated with the control of reduced-order models are eliminated. The control gains
are obtained following an approach based on training the controller on an ensemble of known
earthquake records. However, since only two earthquake records were provided in this study,
an ensemble of one “known” earthquake time history has been used to train the controllers;
this represents a serious limitation for the proposed approach. In addition, the effectiveness of
the proposed methodology could have been compromised by the identification process used in
the development of the evaluation model. Nevertheless, the proposed controllers show good
structural performances with control forces well within the limits imposed by the benchmark
problem. By changing the weighting factors on quantities directly related to the full-order
model, it is possible to trade—offs better performances in terms of structural response and/or

control forces.
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max. rms actuator voltage

1.0 volts

max. rms actuator displacement 3.0 cm
max. rms actuator acceleration 20¢g

max. actuator voltage 3.0 volts
max. actuator displacement 9.0 cm
max. actuator acceleration 60g

Table 1: Maximum allowable values for controller actions.
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Reference PBL
Controller #1 wy = 37.3 rad/sec wy = 37.3 rad/sec
¢g=03 é3=0.3
N 0.2840 0.5043
J, 0.4396 0.3909
J3 0.5114 0.3968
) 0.5125 0.5055
Js 0.6267 0.1161
rms act. volt. (volts) 0.1430 0.9048
rms act. acc. (g’s) 1.1218 0.5121
rms act. displ. (cm) 0.6700 0.5043
Reference PBL (El Centro) PBL (Hachinohe
N 0.4556 0.4267 0.4598
J7 0.7102 0.6483 0.8200
Jg 0.6680 0.4762 0.5069
Jg 0.7753 0.4728 0.5797
Jio 1.3360 1.0941 0.9177
rms act. volt. (volts) 0.5255 0.4513 0.2328
rms act. acc. (g’s) 4.8275 5.5251 2.3676
rms act. displ. (cm) 2.0017 1.6049 0.8415
summation worst J's 6.3193 5.5841

Table 2: Comparison between Reference and PBL Controller # 1 (in bold maximum values)
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Reference PBL
Controller #2 wy = 37.3 rad/sec wy = 37.3 rad/sec
¢g=03 é3=0.3
N 0.2840 0.4183
J, 0.4396 0.6572
J3 0.5114 0.2275
) 0.5125 0.2325
Js 0.6267 0.6212
rms act. volt. (volts) 0.1430 0.0739
rms act. acc. (g’s) 1.1218 1.1120
rms act. displ. (cm) 0.6700 0.2980
Reference PBL (El Centro) PBL (Hachinohe
N 0.4556 0.4733 0.5008
J7 0.7102 0.7164 0.9016
Jg 0.6680 0.3606 0.2863
Jg 0.7753 0.3650 0.3538
Jio 1.3360 1.0467 0.8848
rms act. volt. (volts) 0.5255 0.3293 0.1413
rms act. acc. (g’s) 4.8275 5.2856 2.2828
rms act. displ. (cm) 2.0017 1.2154 0.4752
summation worst J's 6.3193 5.3314

Table 3: Comparison between Reference and PBL Controller # 2 (in bold maximum values)
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Reference PBL
Controller #3 wy = 37.3 rad/sec wy = 37.3 rad/sec
¢g=03 é3=0.3
N 0.2840 0.3209
J, 0.4396 0.4961
J3 0.5114 0.4299
) 0.5125 0.4346
Js 0.6267 0.4742
rms act. volt. (volts) 0.1430 0.1394
rms act. acc. (g’s) 1.1218 0.8489
rms act. displ. (cm) 0.6700 0.5632
Reference PBL (El Centro) PBL (Hachinohe
J 0.4556 0.4222 0.4513
J7 0.7102 0.6798 0.7967
Jg 0.6680 0.5777 0.5556
Jg 0.7753 0.5618 0.6440
Jio 1.3360 0.8657 0.8894
rms act. volt. (volts) 0.5255 0.5067 0.2656
rms act. acc. (g’s) 4.8275 4.3716 2.2947
rms act. displ. (cm) 2.0017 1.9467 0.9223
summation worst J's 6.3193 5.5148

Table 4: Comparison between Reference and PBL Controller # 3 (in bold maximum values)
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Reference PBL
Controller #4 wy = 37.3 rad/sec wy = 37.3 rad/sec
¢g=03 é3=0.3
N 0.2840 0.2636
J; 0.4396 0.4042
J3 0.5114 0.5742
) 0.5125 0.5783
Js 0.6267 0.5804
rms act. volt. (volts) 0.1430 0.1807
rms act. acc. (g’s) 1.1218 1.0389
rms act. displ. (cm) 0.6700 0.7523
Reference PBL (El Centro) PBL (Hachinohe
N 0.4556 0.3997 0.4233
J7 0.7102 0.6282 0.7180
Jg 0.6680 0.7651 0.7595
Jg 0.7753 0.7463 0.8705
Jio 1.3360 1.0806 0.9964
rms act. volt. (volts) 0.5255 0.6614 0.3539
rms act. acc. (g’s) 4.8275 5.4568 2.5708
rms act. displ. (cm) 2.0017 2.5785 1.2608
summation worst J's 6.3193 6.2582

Table 5: Comparison between Reference and PBL Controller # 4 (in bold maximum values)
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FIG. 1; Transfer Functions of Floor Accelerations: Controller 1
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FIG. 2: El Centro 1940 NS 3rd Floor Displacements
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FIG. 3: El Centro 1940 NS 3rd Floor Accelerations
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FIG. 4: El Centro 1940 NS Control Signals
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FIG. 5; Transfer Functions of Floor Accelerations: Controller 4
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FIG. 6: El Centro 1940 NS Displacement Response: Controller 4
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FIG. 7: El Centro 1940 NS Acceleration Response: Controller 4
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