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SUMMARY

In this paper, both the methods of continuous sliding mode control (CSMC) and
continuous sliding mode control with compensators (CSMC&C) have been applied to two
benchmark structures; namely, a building model equipped with an active mass driver system, and
a building model equipped with an active tendon system. The CSMC&C strategy is a
modification of CSMC to facilitate the design of static output feedback controllers and to provide
a systematic tuning of the control effort. Due to the structural identification scheme used in the
benchmark problems, in which the state variables are fictitious, one can not take the full
advantages of static output feedback controllers. As a result, an observer is used in CSMC
whereas a low-pass filter is incorporated for each measurement in CSMC&C. The purpose of
using low-pass filters in CSMC&C is to transform the benchmark problems into strictly proper
systems. The main advantage of the CSMC&C method is that the on-line computational effort is
reduced since the dimension of filters and compensator is much smaller than that of an observer.
Simulation results based on the CSMC and CSMC&C methods are presented and compared with
that of the LOG method. Robustness of stability and noise rejection for each controller design
are also illustrated by examining the loop transfer function. Simulation results for the benchmark
problems indicate that the control performances for LOG, CSMC and CSMC&C are quite

comparable.
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I. INTRODUCTION

The theory of sliding mode control (SMC) or variable structure system (VSS) was
developed for robust control of uncertain nonlinear systems [e.g., Utkin', Zhou and Fisher’]. Its
main idea is to design a controller to drive the response trajectory into the sliding surface, in
which the motion of the system is stable. Applications of continuous sliding mode control
(CSMC) that does not have chattering effect to the following seismic-excited structures have
been studied: (i) linear and nonlinear or hysteretic buildings [Yang et al* *°, Singh et al‘], (ii)
sliding-isolated buildings [Yang et al’], and (iii) parametric control, such as the use of active
variable dampers (AVD) on bridges [Yang et al*] and active variable stiffness (AVS) systems
[Yang et al’]. In addition to full-state feedback controllers, static output feedback controllers
using only a limited number of sensors installed at strategic locations were also presented in the
studies above. Shaking table experimental verifications of the CSMC methods for linear and
sliding-isolated building models have been conducted [Yang et al”'°]. Based on the simulations
and experimental results, it was demonstrated that the continuous sliding mode control methods
are robust and their performances are quite remarkable.

Recently, a technique for designing sliding mode controllers by introducing a fixed-order
compensator has been presented [Yallapragada et al'!, Yang et al'* '*], referred to as CSMC&C.
The main advantages of using a fixed-order compensator in sliding mode control are as follows:
(1) the static output feedback controller can be designed easily using the theory of Linear
Quadratic Regulator (LQOR) static output feedback design, and (ii) the modulation of the response
quantities and control efforts can be made in a systematic manner.

In this paper, both the methods of CSMC and CSMC&C are applied to two benchmark
problems [Spencer et al'*'*] for the evaluation of their performances. For these two benchmark
problems, the entire structure-control system is represented by the evaluation model from which
the control performance is evaluated. The reduced-order model (or design model) with a smaller
dimension is constructed for the controller design in order to reduce the time delay for on-line
integration for dynamic output feedback controllers. Due to the identification scheme used in
these two benchmark problems, the state variables are fictitious variables rather than the physical
variables, such as displacements, velocities or accelerations. This excludes the applications and

advantages of static output feedback controllers for CSMC and CSMC&C, since fictitious



variables can not be measured directly. Consequently, the dynamic output feedback controllers
with on-line integration are used, and modifications have been made for CSMC and CSMC&C.
For the CSMC method, an observer that is the modification of the Kalman-Bucy filter is
implemented to estimate the state variables of the design model for computing the control
command. For the CSMC&C method, a first-order low-pass filter is introduced for each
feedback measurement to facilitate the dynamic output feedback design. Simulation results
based on CSMC and CSMC&C are presented and their performances are compared with that of
the LOG method. Since the control robustness for the stability and noise rejection for each
controller design can be guaranteed by limiting the magnitude of the loop transfer function in the
high frequency range, the plots of loop transfer functions for three control strategies are also

presented for comparison.

II. FORMULATION

For the benchmark problems, the interactions among the structure, control devices, and
earthquake were taken into account in the input-output relations, and the system dynamics is
represented by the plant P(s) as shown schematically in Fig. 1. The controlled plant has two

inputs, i. €., the earthquake X, and the actuator command u, and two outputs i. e., the control

g
output z and measured output y. The control output, consisting of response variables of the
structure and control devices, is adjusted for the control objective. The measured output,
consisting direct measurements from the sensors, is used as the feedback quantities of control.

The evaluation model given by [Spencer et al'* "

] is expressed as

x=Ax+Bu+EX, 1)
in which x is the state vector consisting 28 state variables for the active driver system (or 20 state
variables for the active tendon system); u is a scalar control command; and X ¢ is the ground
acceleration. The matrices A, B and E are system matrix, control location matrix and excitation
influence vector, respectively. The /-dimensional control output z and m-dimensional measured
output y are given by

2=C,x+D, u+F, i, )

and



y=ny+Dyu+Fy5c'g+v 3)
, respectively, in which C,, D,, F,, C,, D, and F, are matrices with appropriate dimensions and v
is the measurement noise vector. Hence, the plant P(s) can be partitioned as

P(s) = 4
yx"g Yu
Where

P,; =C,(s1-A)"'E+F,;P,, =C,sI-A)"'B+D, ;

©)
-1 . _ ~1
Pyig =Cy(sI-A)"E+F,; P, =C, (sI-A) B+D,

In Egs. (2) and (3) , the control output z and measured output y consist of the following physical

quantities: (i) for the active mass driver system : z = [ x,, X, X3, X,,, X, ¥, X3, Xpp» Xa1» X405

s e o . o _ ; e o . .
X435 X4y ] or their combinations, and y = [x,,, ¥,, ¥,5, %3, %45 ¥,], in which x; is the

th

displacement of i" floor relative to the ground, x,, is the displacement of the active mass driver

relative to the 3“ floor, %, is the absolute acceleration of the i* floor, and %, is the absolute

acceleration of the mass driver, and (ii) for the active tendon system : z = [x,, Xy X35 X5 X5 Xy,

X35 Xps ¥a15 X495 X3, f 1 or their combinations, andy =[x, %), ¥,5, %3, /; X,]', in which
x, and x, are the displacement and velocity of the actuator piston, and fis the tendon force. In

the controller design, one has the freedom to choose appropriate control outputs and measured
outputs from z and y given above, based on the control objective and the sensor installation. As
a result, the matrices C,, D,, F,, C,, D, and F, should be modified appropriately to be consistent
with z and y used.

With fictitious state variables, the controller can be designed such that the control
command is computed on-line through dynamic output feedback that uses the measured output as
feedback quantities. The transfer function of dynamic output feedback, K(s), is shown in Fig. 1.
To avoid serious time delay, the dimension of dynamic output feedback equations is restricted
not to exceed 12 states. Therefore, a reduced-order design model with a dimension of 7 (r < 12)
was constructed to provide a template for the controller design. In what follows, the vectors x,,
Yo Zp, F,p, Fy,, E, and matrices A,, B,, C,,, D,,, C,,, D,,, are used to represent the corresponding

vectors and matrices in the design model.



(A) Continuous Sliding Mode Control (CSMC) Using an Observer

Design of Sliding Surface

The objective of CSMC is to design a controller to drive the state trajectory into a sliding
surface (reaching condition) and maintain it there, whereas the sliding surface is designed to be
stable [Utkin', Zhou and Fisher’]. The sliding surface is expressed as S =P x, =0, where Sis a
scalar (since u is a scalar), and P is a (1xr) constant matrix called sliding surface matrix. To
restrict the response trajectory to the sliding surface (i. e. S=0 and S$=0), and to stabilize the

motion on the sliding surface, the matrix P can be determined by minimizing the integral of a

quadratic function
J =[5 x(1) €, Q Cyp x,(1) ©)

In Eq. (6), Q is an appropriate (/ x [) positive semi-definite weighting matrix [Yang et al*].

Design of Controller for Reaching Condition

The stable controller is designed such that a non-positive time derivative of a Lyapunov
function ¥ = 05 S’ S is ensured at every time instant, i. e., ¥ <0. The continuous sliding mode
controller, in general, can be expressed as [Yang et al*?)

u=Kyx,.+ K %, @)
in which K is the feedback gain and K is the feedforward gain given, respectively, by
K, = - (PB,)'PA, -8 B.P'P (8)
and
K,=-(PB,)"'PE, 9)
in which & is the gain margin (scalar). Since the first term in Eq. (7) is the state feedback, a
stable observer will be designed independently to estimate the state x, from the measured output

y, based on the separation theorem.



Design of Observer
First, we consider the case in which the feedforward compensation is ignored, i.e.,

K, =0. Assuming that the earthquake ¥, and the measurement noise v are uncorrelated
Gaussian white noise processes, the well-known Kalman-Bucy filter can be modified as
X, =A%, +B u+ Ly(y, - Cy, X, - Dy, u) (10)
in which X, is the estimate of the state. The observer gain matrix L, in Eq. (10) is obtained as
L, = (P,Cy + S,)R,” (11
where P, is the solution of the Riccati matrix equation
P,A+AP -PC,R'C,P +Q,-S, RS, =0 (12)
in which
A=A -C,R,'S; (13)
In Egs.(11)-(13), Q,, S, and R, are the partitions of the auto-power spectral density matrix of

the vector [E’rjc'g Fi %, +v' I, given by

Qo = Er Sﬁc'gig E:' > So = Er S)'égjig F)"r > Ro = va + Fyr Sigjég F)"r (14)

where ngjeg and S,, are the power spectral densities of ¥, and v, respectively.
With the feedback gain K, the observer equation for on-line integration becomes
x, = (A, +B, K, -L,C,, —-L,D, K, )%, +L,y, (15)
In addition to their individual stability, the observer gain L, and controller gain K, should be
designed to guarantee that (A, + B, K, - L,C,, - L, D, K, ) is also stable. The control
command in Eq. (7) at every sampling time instant is given by
u = K, X, (16)
and the K(s) matrix in the block diagram of Fig. 1 can be expressed as
K(s) = Ky (sI - A, -B, K, +L,C, + L, D, K, )L, 17
If the feedforward compensation K, is included in the CSMC controller, the reduced-
order design model can be expressed as

X, = A, x, +B u+ E %, (18)



in which E, =E, + B, K rand u involves only the feedback loop. Therefore, the design of the
observer follows Eqgs. (10)-(15) except that the parameters Q, and S, are modified as

Q =ES;; E; S, =ES;; F, (19)
Hence, the resulting control command at every sampling time instant is given by

u=K,%+ K, %, (20)

(B) Continuous Sliding Mode Control with Compensator (CSMC&C)

For the design of CSMC&C controllers, instead of using an observer, a first-order filter is
introduced for the measured output y, as follows
n=A,n+ By, (1)
where m represents the m-dimensional new output feedback vector; A, and B, are filter
coefficient matrices. Combining Eq. (21) and the state equation of the design model, one obtains
the (r + m) augmented design model
X, =A% +B W (22)

where

r\n/)’"" |B,C, A’ (B,D,)’ " (B F, B, v) @

The control output z, and the new measured output 1 for the augmented design model become

~

z, =C,X, + D, u+F, 5c'g 24)
and

n = éyr X, (25)

where (N“er ={C, , 0] and Eyr =[ 0, I, ] with I, being an identity matrix of m
dimension. Note that Eq. (25) has a strictly proper form. As observed from Egs. (22)-(25), the
introduction of 1 provides the controller with the flexibility to make trade-off among the control
output z, , the feedback output n, and the control command .

For the benchmark problems, the structural response is dominated by the lower frequency

component and the system uncertainty is more significant at high frequency. It is beneficial to



weight more on the low frequency, and hence a low-pass filter is chosen such that the high
frequency component in y, is filtered out. For simplicity, the low-pass filter can be used

independently for each measurement so that A, and B, are diagonal matrices with every

diagonal element equal to a; and b;, respectively. One can further let @, = b, such that the
transfer function of the individual filter equation is a,/(s+ a;), where a; is referred to as the
roll-off frequency.
Design of Sliding Surface
Consider a 2-dimensional compensator with the state vector q = [ ¢, , ¢, ]’ as shown in
Fig. 2 [Yang et al'> ", Wu'f],
@ = Lyg + Lpg, + Nim (26)
G2 = Lyq + Lyygs + Non+ Dyu + Ep X, (27)
in which N, , N, are matrices with appropriate dimensions, and L,,, L,, L, , Ly, , D, and E,, are
scalars. If feedforward compensation is neglected, then E,, is zero. Otherwise, E,, is normally

chosen to be the element of excitation vector corresponding to the controller location. The

sliding surface is expressed in terms of the compensator variables ¢, and ¢, as
S=Phq+Pq,=0 (28)
The sliding surface coefficients P, and P,, and compensator coefficients, N,, N,, L,;, Ly,, L,; ,

L,, and D, , are determined by minimizing an objective function

J=E[]7 % Q% + QN+ 40, @i+ ty R, g+ &y R, G4y ] (29)
in which z. = (C, x,+ D, u,) and u, is the equivalent control force. The detail

derivations and design procedures will be described in the Appendix. After minimization, the
equivalent control force can be computed by

ueq= Gn + H ql (30)

where G and H have been obtained in the process of minimization as described in the Appendix.



Design of Controller for Reaching Condition
The controller is designed such that the time derivative of a Lyapunov function ¥ = 0.5
S'S is non-positive at every time instant, i.e., ¥ <0. The resulting CSMC&C controller is
given by [Yang et al'> ", Wu'‘]
U= thy— [My+ (B,D))" 8B 1q~ [Ma+ (BD,)" 8B 1q,— D, 'Eyy %, (31)
in which
My= (B D) (RLy B R+ B Ly B R) (32)
My = (P,Dy)" (R Ly + P Ly) (33)

and 8 is the gain margin. The feedforward term, —~D2‘1 Ej X,, in Eq. (31) can be used to

improve the control performance. The control command in Eq. (31) can be expressed in terms of

the feedback loop and feedforward compensation as,

M
u=K, |q|+K i, (34)

92

where the feedback gain matrix, K , and feedforward gain matrix, Ky, are given by

Ky =[G , H-M; - (P Dz)_l 3P, —M, -(h Dz)_l 0P ] (35)

K;,=-D,""E, (36)
Dynamic Output Feedback

As observed from Eq. (34), the feedback loop of the controller # involves the filter output

vector 1 and the compensator variables ¢, and g,, which should be computed on-line. Usually,
if a hardware low-pass filter is implemented to each measurement, the output m of the filter is
considered to be the direct measurement quantities. Then, 7 is used in Egs.(26)-(27) to compute
g, and g, . In this case, the dynamic output feedback equation is the 2-dimensional compensator
equation given in Eq. (26) and (27). Here, we assume that a software low-pass filter is used,
therefore, the first-order filter, Eq. (21), and the compensator, Egs. (26)-(27), form a system of

dynamic output feedback equations with a (m+2)-dimensional state vector £ ,



0

E=AE+B ut By +| 0 |, (37)
Eyp,
where
n A, 0 0 0 B,
E=1q1|;Ag=|Ny L Ly |;B;=| 0 |;E,=|0 (38)
9 Ny Ly Ly D, 0

Substituting Eq.(34) into Eq. (37) , one obtains
&= (Ag+ B K, )&+ Ey, (39)
To maintain the stability of Eq. (39) for the on-line integration, the filter and compensator should

be designed such that (A, +B;K,,) is stable. In the simulation for the control performance, y,

in Eq. (39) is the actual measurement from the sensors. As observed from Eq. (39), one
advantage of the CSMC&C method is that it involves less on-line computational effort than the
use of an observer in CSMC and LQG strategies.

Consequently, the K(s) matrix for CSMC&C in the block diagram of Fig. 1 can be

expressed as

K(s) = K, (sI - A, - B, K, )'E, (40)

(C) Control Robustness

While the performance of the controller is important, both the robustness of the control
performance with respect to system uncertainties, noise and disturbance rejection, and the
robustness of the structural stability with respect to system uncertainties are equally important.
In particular, for civil engineering applications, uncertainties in damping, stiffness and excitation
are quite significant and should be considered. When the control performance is evaluated by the
measured output y and the system is matched (i. e., E = B), the robustness criterion for the
control performance with respect to system uncertainty and disturbance is that the minimum
singular value of P, (in) K(iw) should be kept as large as possible in the low frequency range [
see Doyle et al'’]. For the robustness of control performance with respect to noise and the

robustness of stability with respect to system uncertainties, the maximum singular value of

10



P (i) K(iw) should be as small as possible in the high frequency range [ see Doyle et al'’]. For
the benchmark problems, the above criterion for the robustness of control performance with
respect to system uncertainties and disturbances may not be applicable because our performance
is based on z instead of y and the system is not matched. However, the criterion for examining
the stability robustness and noise rejection is applicable.

Moreover, since the dimensions of P,(iw) and K(iw) are (mx1) and (1xm), respectively,
the maximum singular value of P (io) K(i®) is equal to the singular value of K(io) P, (io) (a
scalar), which is referred to as the loop transfer function of the controller. The plot of K(im)
P, (i®) in dB versus the frequency for each control design will be presented and compared with
the specification of the stability robustness described in Spencer et al®, i.e., -5dB for all
frequencies above 35 Hz.

For LOG and CSMC controllers in which Kalman-Bucy filters are used as observers, a

larger intensity S,, of the measurement noise (or equivalently, a smaller intensity S; 3 of

excitation) for the observer design will suppress the noise. Since the noise consists of high
frequency components, the loop transfer function will be smaller in the high frequency range. In
this case, however, the estimation of the state might be degraded. Therefore, a trade-off should
be made for the choice of S,,. For CSMC&C controllers that use a first-order low-pass filter for
the feedback measurements, the loop transfer function will be smaller in the high frequency
range for smaller A, and B, . This is because the effect of the measurement noise is less

amplified.

IIIl. NUMERICAL SIMULATION AND CONTROL PERFORMANCE

The performances of CSMC and CSMC&C algorithms for two benchmark problems will
be demonstrated by numerical simulations using the MATLAB SIMULINK program for the
evaluation model. The El Centro and Hachinohe earthquake records as well as an artificial
earthquake with the nominal Kanai-Tajimi spectrum given in [Spencer et al'* 1] (o, = 37.3 r:e——i—f ,
Cg = 0.3, and T, = 300 seconds for the AMD problem, and @, = 14.5 % Cg = 0.3, and
Tf = 750 seconds for the active tendon problem; for computational simplicity, no maximization
over (cog, (;g) was performed) will be used for simulations. The simulation results based on the

LQG control method are also presented for comparison.
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Benchmark Problem No. 1: Active Mass Driver System

The response quantities of the active mass driver system with zero control input, are
listed in Table 1. Peak response quantities under El Centro and Hachinohe earthquake records
are shown in columns (2) and (3) of the upper part of Table 1, whereas the the temporal root-
mean-square responses under the artificial earthquake, denoted by o, are shown in column (5) of
the upper part of Table 1.

With active control, the control output z, is chosen to be z, = [ d,, d,, dy, x,,, %, X, X3,

Xps Xa15 X490, X435, X,, ] Where d; is the i interstory drift. With such a choice of z,, the vector
F,. and matrices C,, and D, for the design model are different from those given in Spencer et
al'. However, these can be obtained easily by a simple transformation. For each control
strategy, three different design cases (output feedback) are considered; namely, 5-sensor, 3-

sensor and 1-sensor. The measured output for these three cases are : (i) 5-sensor; y, = [x,,,%,,

X425 %435 %4, ], (ii) 3-sensor; y, = [%,,,%,,,%,3]' , and (iii) 1-sensor; y, = [#,;]. The (10x10)

design model constructed by Spencer et al*

(10x10) design model constructed by the ‘balreal’ and ‘modred’ functions in MATLAB
CONTROL SYSTEM TOOLBOX was used for CSMC and CSMC&C controllers. The practical

was used for LOG controllers, whereas another

limitations, such as the maximum control command, maximum driver acceleration and maximum
actuator stroke, and the simulation guidelines were given in Spencer et al'*. All the controller are
designed to utilize as much as possible the full capacity of the actuator without violating the
constraints.

For the LOG controllers, the control output z, and the control command u are tuned as
follows: (i) 5-sensor case; Q = diag [130, 100, 100, 0, 0, 0, 0, 0, 1, 1, 10, 62], R = 50, (ii) 3-
sensor case; Q = diag [32, 10, 10,0,0,0,0,0, 1, 1, 1, 5], R = 13, and (iii) 1-sensor case; Q =
diag [50, 43, 43, 0, 0, 0, 0, 0, 1, 1, 10, 12], R = 40. For the design of observers, y =

Sz, /8, =5 isused. The controllers are designed such that the magnitude of the loop transfer

function is below -5dB for frequencies above 35 Hz. As explained earlier, this can be achieved
by use of a smaller y ; however, a smaller Y may degrade the estimation of the state. After

extensive simulations, a value y =5 is used. The loop transfer functions, K(in) P, (i®), for the

12



LQOG method are shown in Fig. 3 (a), in which the results for the 5-sensor, 3-sensor and 1-sensor
cases are denoted by the solid curve, dashed-dot curve and dashed curve, respectively. J, to Ji,
for the evaluation model are presented in columns (2), (6) and (10) of Table 2 for 5-sensor, 3-
sensor and 1-sensor cases, respectively. The root-mean-square command voltage under the
stochastic earthquake is denoted by o, in Table 2, whereas the maximum command voltage
under El Centro and Hachinohe earthquakes are denoted by |u(¢)| in Table 2. Under El Centro
earthquake, the time history of the first-story drift, d,, for the 5-sensor case are presented in Fig.
4 (a), in which the dotted curve and the solid curve represent the response quantity without
control (zero control input) and that using LOG controller, respectively.

For CSMC controllers, the feedforward compensation is ignored for the fairness of
comparisons. The design parameters for controllers are as follows: (i) S-sensor case; Q = diag
[1600, 1100, 1100, O, O, O, 0, 110, 10, 15, 15, 1], & = 40, (ii) 3-sensor case; Q = diag [1100,
1100, 1100, 0, 0, 0, 0, 165, 10, 15, 15, 1], & =40, and (iii) 1-sensor case; Q = diag [1500, 1100,
1100, 0, 10, 0, 0, 100, 10, 15, 15, 20], 8 = 40. For the observer design, we choose y =

Sy, %, /S, ., =5 such that the loop transfer function is smaller than -5dB for frequencies above 35

Hz. The loop transfer functions for the CSMC method are presented in Fig. 3 (b), in which the
results for 5-sensor, 3-sensor and 1-sensor cases are denoted by the solid curve, dashed-dot curve
and dashed curve, respectively. J, to J), as well as o, and |u(¢)| for the evaluation model are
presented in columns (3), (7) and (11) of Table 2 for 5-sensor, 3-sensor and 1-sensor cases,
respectively. For the 5-sensor case using CSMC control, the time history of the first-story drift,
d,, under El Centro earthquake is presented in Fig. 4 (b) by the solid curve, whereas the dotted
curve represents the corresponding response without control. The time history of the sliding
surface S is plotted in Fig. 4 (c). As observed from Fig. 4 (c), the sliding surface S = 0 is not
maintained because : (i) the feedforward compensation in Eq. (9) has been ignored, and (ii) the
estimation of state x, from an observer is required in the computation of the control command.
However, the stability of S is always guaranteed.

The design parameters for CSMC&C controllers are as follows: (i) S5-sensor case;

An =-71I;, B11 = 715, where I, is an (mxm) identity matrix, Q,= diag [6000, 6000, 6000, 0,

0,0,0,120, 1,1, 1,800], 0, =1, Q, =diag [0, 120,120,120,01, R,=0.1, R, =0.1, L,=-1,

13



Ly,= -0.001, A= 1, P= 1000, D,= 1 and & =107, (ii) 3-sensor case; An =-101,,
B, =101;, Q,= diag [800, 800, 800, 0, 0, 0, 0, 50, 0, 0, 0, 60], Q,, = diag [ 100, 100, 100 ] and
all other parameters are identical to case (i), and (iii) 1-sensor case; A,=-10, B, =10, Q,=
diag [6000, 700, 2000, 0, 0, 0, 0, 100, 0, 0, 0, 100], Q,, = 100 and all other parameters are

identical to case (1). Note that the compensator coefficients N,, N,, L;, and L,, were computed
from the design parameters above by minimizing Eq. (29) as presented in Appendix [also see
Yang et al'’, Wu'®]. For the fairness of comparisons, the feedforward part is ignored, i. €., E,, =
0. The choice of A, and B, depends on whether the requirement for the loop transfer function
can be satisfied. As mentioned earlier, the requirement can be satisfied easily by choosing
smaller A, and B,. However, extensive simulation results indicate that it is difficult to adjust the
control command to be more than 1 volt if smaller A, and B, are used. Therefore, a trade-off
was made to choose the above values for A, and B, . The loop transfer functions are plotted in
Fig. 3 (c), in which the results for 5-sensor, 3-sensor and 1-sensor cases are denoted by the solid
curve, dashed-dot curve and dashed curve, respectively. J, to J;, as well as o, and [u(¢)| for the
evaluation model are presented in columns (4), (8) and (12) of Table 2. Note that we can not
adjust the control command to be more than 1 volt for the 1-sensor case because of the limitation
of such a configuration. For the 5-sensor case using CSMC&C control, the time history of the
first-story drift under El Centro earthquake is presented in Fig. 4 (d) by the solid curve, whereas
the dotted curve represents the response without control. The time history of the sliding surface

S is plotted in Fig. 4 (e). As observed from Fig. 4 (e), the sliding surface motion S = 0 is well

maintained, since the control command in Eq. (31) always guarantees ¥ <0.
As observed from Table 2, the control performances for three control methods, i.e., LG,

CSMC and CSMC&C, are quite comparable.

Benchmark Problem No. 2: Active Tendon System

The response quantities of the active tendon system with zero control command are listed

in the lower part of Table 1. For active control, the control output z, of the active tendon system

is chosen as z, = [d,, d,, &, x,,, %, X5, %3, %, X1, %49, ¥,3,f ] in which d is the i* interstory

p!

drift. For each control strategy, three different design cases are considered; namely, 5-sensor, 3-
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sensor and 1-sensor. The measured output for these three cases are : (i) S5-sensor ;
Y, = [xp, X, X400 %,5 f1', (i) 3-sensor ; y_ = (%, X, %,5]1" for LQG and
CSMC, and y, = [xp, X 3 f1' for CSMC&C, and (iii) l-sensor ; y, = [5c'a3] for LOG
and CSMC, and Y. = [f] for CSMC&C. A (12x12) design model constructed by the
‘balreal’ and ‘modred’ functions in MATLAB CONTROL SYSTEM TOOLBOX was used for
LQG and CSMC controllers. Another (12x12) design model used for CSMC&C controllers is
obtained by making a balanced transformation of the evaluation model and reducing the system
by keeping the same eigen properties of the first 12 complex modes [Wu'®, Davison'™]. The
limitations, such as the maximum control command and actuator stroke, and the simulation
guidelines were given in [Spencer et al'’]. All the controller are designed to utilize as much as
possible the full capacity of the actuator (i. e., control efforts) without violating the constraints.
For the LOG controllers, the control output z_ and the control command u are tuned as
follows: (i) 5-sensor case; Q =diag [1,1,1,0,0,0,0,0, 1, 1, 1, 6], R =4, (ii) 3-sensor case; Q =
diag {1,1,1,0,0,0,0,0, 1, 1, 1, 6], R =4, and (iit) 1-sensor case; Q = diag{1,1,1,0,0,0,0, 0,
1, 1, 1, 6], R = 3. For the observer, y = Sgggg /8,, =05 is used such that the magnitude of the

loop transfer function is less than -5dB for frequencies above 35 Hz. The loop transfer functions,
K(io) P,,(io), for the LOG method are shown in Fig. 5 (a), in which the 5-sensor, 3-sensor and
1-sensor cases are denoted by the solid curve, dashed-dot curve and dashed curve, respectively.
Jy to Jyo as well as o, and |u(¢)| for the evaluation model are presented in columns (2), (6) and
(10) of Table 3 for 5-sensor, 3-sensor and 1-sensor cases, respectively. For the 5-sensor case
using LOG control, the time history of the third-story drift under El Centro earthquake is
presented in Fig. 6 (a) by the solid curve, whereas the dotted curve represents the response
without control.

For CSMC controllers, the control parameters are given as follows: (i) 5-sensor case; Q =
diag [10, 10, 10, 80, 0, 0, 0, 0, 100, 10, 10, 110], & = 80, (ii) 3-sensor case; Q = diag [10, 10, 10,
80, 0,0, 0,0, 100, 10, 10, 110], 6 = 80, and (iii) 1-sensor case; Q = diag.[10, 10, 10, 80, 0, 0, 0,
0, 100, 10, 10, 110], & = 80. For the observer design for all three cases, we consider y =
S; 3, /8, =5 such that the criterion for the stability robustness is satisfied. The loop transfer
functions for CSMC controllers are shown in Fig. 5 (b), in which the 5-sensor, 3-sensor and 1-

sensor cases are denoted by the solid curve, dashed-dot curve and dashed curve, respectively. J,
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to J), as well as o, and |u(f)| for the evaluation model are presented in columns (3), (7) and (11)
of Table 3 for 5-sensor, 3-sensor and 1-sensor cases, respectively. For the 5-sensor case using
CSMC control, the time history of the third-story drift under El Centro earthquake is presented in
Fig. 6 (b) by the solid curve, whereas the dotted curve represents the response without control.
The time history of the sliding surface S for the 5-sensor case is also plotted in Fig. 6 (c). As
observed from Fig. 6 (c), the sliding surface motion S = 0 is not maintained because : (i) the
feedforward compensation in Eq. (9) has been ignored, and (ii) the estimation of the state, x,,
from an observer is required in the computation of the control command. However, the stability
of S is always guaranteed. As observed from Table 3, the control performances for both LOG
and CSMC controllers are remarkable even using only one acceleration sensor on the top floor.
For CSMC&C controllers, the parameters for the filter are chosen to be A, =-101,, and
B, =101, where m is the number of sensor. The design parameters are given as follows : (i)
5-sensor case; Q, = diag [10, 10, 10,0, 0, 0, 0, 0, 10, 10, 10, 20], Q, = diag [0, 0, 0, 0, 0], qu =1,
R,=30, R, =0.1, L;=0.1, Lp,=-2,P,=1,P,=1, D,=1 and 6 = 100, (ii) 3-sensor case; Q, =
diag [1,1,1,0,0,0,0,0, 1, 1, 1, 150], Q, = diag [0, 0, 0], O, =1, R,=200, R, =0.1, L;,=0.1,
L,=-2,,P,=1,P,=1, D,=1 and & = 100, (ii1) 1-sensor case; Q, =diag [1,1,1,0,0,0,0,0, 1,
1,1,10, Q,=0, 9, =1, R,=10, R, =0.1, L,=0.1, L,=2,,P,=1,P,=1, D,=l and § =
100. As in the active mass driver system, a smaller A, and B, can satisfy the criterion for
stability robustness. The loop transfer functions of CSMC&C controllers are plotted in Fig. 5 (c)
in which the solid curve, dashed-dot curve and dashed curve denote the loop transfer functions
for the 5-sensor, 3-sensor and 1-sensor cases, respectively. J, to J,, as well as o, and |u(?)| for
the evaluation model are presented in columns (4), (8) and (12) of Table 3 for 5-sensor, 3-sensor
and 1-sensor cases, respectively. For the 5-sensor case using CSMC&C control, the time history
of the third-story drift under El Centro earthquake is presented in Fig. 6 (d) by the solid curve,
whereas the dotted curve represents the response without control. The time history of the sliding

surface S for the 5-sensor case is also plotted in Fig. 6 (¢). As observed from Fig. 6 (e), the

sliding surface motion S = 0 is well maintained, since the control command in Eq. (31) always

guarantees ¥ <0.
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It is observed from Table 3 that the control performances of CSMC controllers are
comparable to those of LOG controllers. Although the performance of CSMC&C is slightly
worse than LOG and CSMC; however, it is easier to implement CSMC&C controllers because

the dimension of the dynamic output feedback equation is smaller.

IV. CONCLUSIONS

The methods of continuous sliding mode control (CSMC) and continuous sliding mode
control with a compensator (CSMC&C) have been applied to two benchmark models. Due to the
specific identification scheme used in the benchmark problem in which the state variables are
fictitious and the output measurement y involves both the control signal and the earthquake
excitation, static output feedback controllers are not applicable and therefore the design of CSMC
and CSMC&C controllers becomes more involved. Likewise, the performances of CSMC and
CSMC&C controllers may have been compromised. As a result, an observer is used for CSMC
controllers, whereas a low-pass filter is introduced for each measurement in CSMC&C
controllers.

The purpose of introducing filters in CSMC&C is to transform the benchmark
formulations into strictly proper forms such that the framework of static output feedback can be
used. The design procedures for CSMC&C involve LOR static output feedback such that
numerical iterations are required. To obtain a convergent solution, we start with a larger
weighting R, for the control effort u.,, and then reduce R, gradually. The solution for the
previous R, is used as the initial trial for the next R, value. Further, the compensator parameters
L,, and L,, were assigned such that not only the compensator system matrix L is stable but also
the open-loop system of compensator is stable. As a result, the design procedures and
computational efforts involved in designing a CSMC&C controller is much more involved than
that of CSMC and LQG controllers. However, an advantage of the CSMC&C controllers is that
the on-line computational effort is reduced because the dimension (i. e., m+2) of filters and
compensator is smaller than that of an observer.

The robustness of stability and noise rejection has been presented by plotting the loop

transfer function of the controller. To ensure a larger stability margin, the loop transfer function
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should be as small as possible in the high frequency range. For this purpose, a trade-off has been

made for the selection of the intensity of white noise excitation and measurement noise for LOG

and CSMC methods. For the CSMC&C method, the stability margin can be enlarged sufficiently

by choosing smaller A, and B,. Simulation results indicate that the performances of CSMC and

CSMC&C controllers are quite comparable to that of the LOG method.
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APPENDIX : Derivations and Design Procedures for Sliding Surface of CSMC&C

To confine the response trajectory on the sliding surface, the conditions, S=0 and S=0,

should be satisfied. Then, it follows from Eq. (28) that
4, =-P3 P q, (A1)
provided that P, is invertible, and
S=Pidg + Pyg,=0 (A2)
Substituting Eqgs. (A.1), (26) and (27) into Eq. (A.2), one obtains the control force u, denoted by

Uey » AS
ueg =Gm+ H g (A.3)

in which
G=-(P;D2)" (PINi + P2N2) (A4)
H=-(PyD2)' [ Pt (L= LuPy' PL )+ Pa( Loy - Ln Py Py ) (A.5)

where u,, is referred to as the equivalent control force, that is the control force needed to confine
(or maintain) the system on the sliding surface S = 0, once the system trajectory reaches S = 0.
Substitution of the equivalent control u,, into the augmented design model, Eq. (22), the

closed-loop system of the structure on the sliding surface is given by

~

X, =A%, + B, 4, (A.6)

in which the excitation W has been neglected. Note that in the design of the sliding surface, the
external excitation is neglected; however, it is taken into account in the design of the controller.
Substitution of g, given by Eq. (A.1) into Eq. (27) leads to the compensator dynamics for g, on

the sliding surface as

¢, =( Lu-LePiP1) ¢+ N1y (A7)
Thus, the entire structure-compensator system on the sliding surface defined by Eqgs. (A.6) and

(A.7) can be cast into an augmented state equation of strictly proper form with a (r+m+1)-

dimensional state vector Z,

Z=AZ+Bu (A.8)
Z (A.9)

y=

o}l
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in which

%] _[n] - [& 0] - [8B 0] _ [u] — [€, O
Z= 3y = ;A= ;B= suU= ; C= (A.10)
q 9 0 0 0 1 q9, 0 1

and Egs. (A.3) and (A.7) can be combined as

i=G y (A.11)

— G H
G= [ } (A.12)
P

Ni L - L2 Pz-l

in which

P, and P, as well as the compensator characteristics will be determined from the augmented
system defined by Egs. (A.8)-(A.9). For the augmented system in Egs. (A.8)-(A.9) with the
static output control in Eq. (A.11), the gain matrix G can be obtained by minimizing a

quadratic performance index, Eq. (29). Eq. (29) can be further rearranged into the typical form

of
o= _ Q s Z
J=E AT | dt A.13
in which
c.Q,C, 0 0 D' Q. C +R, 0 C.Q,D, 0
Q= 0 Q, 0 ;'ﬁ{ ];S‘: 0 0| (A.14)
0 0 Q, 0 Ry 0 0

As observed from Eq. (A.13), the coupled weighting matrix S between Z and # is
included in the performance index J. The optimal static output feedback solution by Levine and

Athans'®, which does not include the coupled weighting matrix, is generalized and obtined in the

following. The gain matrix G in Eq. (A.12) is obtained as

T E -l

G=-R'(B'KLC'+S'LC")(CLC") (A.15)
where K and L satisfy the following nonlinear equations

MK+KM+Q+SGC+C'G'S"+C'G'RGC=0

I+ML+LM'=0 (A.16)
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Note that Egs. (A.15)-(A.16) can be solved for G, L, M, K iteratively. Once G is
obtained, the following procedures can be used to compute matrices N, , N,, L,,, L;,, Ly, , Ly,
and D, of the compensator and P,, P, of the sliding surface: (i) G, H, N, and (L,, - L, P," P)) can
be determined from Eq. (A.12); (ii) with G obtained in (i), N, can be determined from Eq. (A.4)
by assigning nonsingular P, , D, and any P,; (iii) From Eq. (A.5) and H obtained above, L,, can
be determined by assigning appropriate L,,; (iv) Since (L,, - L, P," P)) is known, L,, can be
determined by assigning appropriate L,,. L,, and L,, are chosen to guarantee the stability of the
open-loop compensator equation. From a conservative point of view, a stable open-loop
compensator equation is preferable in case the control force is saturated due to the limitation of

the actuator capacity (see Yang et al'?).
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Fig. 1 : Control Diagram for Benchmark Systems

Design Model
X, )=A, X, ()+B, u()+E, %,
yr (t) = Cyr Xr (t) + Dyr u(t) + Fyr jég

VA
“0 Continuous :
«—] Sliding Mode |g . Filter
u(®)] Controller n=A,n+B,y,
u(t)
1 q0 | n()
Compensator

g =Ly g1+ Ly g, + N
dy=Ly g1 +Lp g +Nyn+Dyu+Ep %,

Fig. 2 : Block Diagram of Continuous Sliding Mode Control
with Compensator (CSMC&C)
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Table 1 : Structural Response Quanitites with Zero Control Input

Active Mass Driver System

El Centro Hachinohe Artificial Earthquake
(1) (2) (2) (4) (5)
Quantities Story Story Quantities Story
1 2 3 1 2 3 1 2 3
X; (cm) 2.09]13.2913.4410.96] 1.52| 1.66 oy, (cm) 0.75|1.21| 1.28
d; (cm) 2.0911.2110.2710.96] 0.59] 0.15 ag, (cm) 0.75|0.45|0.08
X, (9) 3.34|4.62| 5.05|1.85(2.17| 2.69 Oy, () 1.04]11.6411.75
X, (cm) 0.25 0.13 Oy, (cm) 0.09
Xy, (cm/s) 10.32 4.84 Oy, (cm/s) 3.38
Xam (9) 5.43 2.94 0%,y (KN) 1.87
Active Tendon System
El Centro Hachinohe Artificial Earthquake
1) 2) 2) 4) )
Quantities Story Story Quantities Story
1 2 3 1 2 3 1 2 3
X; (cm) 2.03|4.9716.57|1.1912.95| 3.85 oy, (cm) 0.70] 1.80] 2.40
d; (cm) 2.0313.0911.81]1.19]1.77]0.95 0y, (cm) 0.70| 1.11{0.60
X4i (9) 1.08]1.18]1.57/0.43]0.67]0.78 O%.; (9) 0.15|0.37{0.49
X, (cm) 0.060 0.035 Oy (cm) 0.020
Xy, (cm/s) 1.072 0.490 oy (cm/s) 0.290
f (kN) 23.08 13.54 ¢ (KN) 7.90
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Table 2 : Comparison of Evaluation Criteria [6G, CSMG andCSMC&C Controllers for
Active Mass Driver System

Quantities LQG | CSMC | CSMC&C
Five-Sensor Casey, = [X., X,1: %50 o3, f]”
1) 2 3) (4)
J1 0.1878 0.1979 0.2114
J 0.2846 0.2936 0.3183
J3 0.8444 0.8221 0.7783
s 0.8259 0.8042 0.7560
J5 0.8327 0.7775 0.6443
gy (volts) 0.2710 0.2668 0.2637
Oy (@) 1.4905 1.3917 1.1534
Oy, (cm 1.1062 1.0770 1.0196
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
J 0.3083 0.3779 0.3077 0.3738 0.3275 0.3757
J; 0.4725 0.6616 0.4730 0.6674 0.6201 0.6287
Jg 1.2479 1.6240 1.2338 1.6832 1.1971 1.7292
Jo 1.2098 1.4811 1.2183 1.4903 1.2097 1.4550
Jio 1.1078 1.6491 1.0749 1.5673 1.1071 1.2821
max |u| (volts) 1.1601 0.7539 1.1481 0.7818 1.1612 0.8087
max |Xan () 5.5942 4.2546 5.4282 4.0435 5.5908 3.3077
max|Xm (cm) 4.2056 2.6958 4.1578 2.7941 4.0343 2.8705
Three-Sensor Casey, = [X,q, X;0) X553l
®) (6) ) ®)
N 0.1943 0.1963 0.1948
s 0.2956 0.2956 0.2939
J3 0.8126 0.8110 0.8286
N 0.7984 0.7970 0.7945
Jg 0.8287 0.8004 0.7409
o, (volts) 0.2567 0.2599 0.2742
O (@) 1.4834 1.4327 1.3261
0y, (cm 1.0645 1.0625 1.0855
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
Jg 0.3164 0.3818 0.3112 0.3760 0.3068 0.3700
J7 0.4888 0.6691 0.4888 0.6695 0.5559 0.6269
Jg 1.1783 1.5022 1.2051 1.5819 1.2415 1.8663
Jo 1.1608 1.4376 1.1870 1.4060 1.2345 1.5739
Jio 1.1026 1.7515 1.1204 1.4647 1.1817 1.5217
max|ul (volts) 1.0989 0.7071 1.1267 0.7350 1.1906 0.8686
max|Xanml () 5.5680 3.5189 5.6581 3.7790 5.9677 3.9260
max Xy (cm) 3.9710 2.4937 4.0613 2.6260 4.1838 3.0981
One-Sensor Casey, = [X_,]
9) (10) (11) (12)
N 0.2112 0.2114 0.2661
J 0.3234 0.3235 0.4093
J3 0.7696 0.7650 0.5490
s 0.7600 0.7524 0.5428
J5 0.7805 0.7677 0.5309
o, (volts) 0.2473 0.2454 0.1710
O%,, (@) 1.3971 1.3741 0.9503
oy, (cm) 1.0082 1.0022 0.7192
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
J6 0.3196 0.3844 0.3167 0.3784 0.3739 0.4179
J; 0.4957 0.6915 0.5168 0.6824 0.7188 0.7001
Jg 1.1451 1.3643 1.1360 1.4741 0.6983 0.9366
Jo 1.1442 1.5644 1.1306 1.3974 0.7241 0.9154
Jio 1.1706 1.8799 1.1817 1.4123 0.8675 0.9064
max|u| (volts) 1.0638 0.6517 1.0607 0.6844 0.6984 0.4405
max |Xan () 5.9118 4.8503 5.9677 3.6438 4.3806 2.3386
max|Xm (cm) 3.8590 2.2647 3.8283 2.4469 2.3531 1.5548
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Table 3 : Comparison of Evaluation Criteria [6G, CSMG andCSMC&C Controllers for
Active Tendon System

Quantities | LQG | CcsMC | CSMC&C
Five-Sensor Casey, = [xp, Xa11 Xg2 Xa3, f]
(1) 2 (3) (4)
J1 0.1646 0.1572 0.1727
J 0.3472 0.3387 0.3669
J3 0.0329 0.0308 0.0317
s 0.0343 0.0328 0.0307
J5 0.0089 0.0095 0.0097
oy (volts) 0.5978 0.5780 0.5811
os (kN) 2.5703 2.7360 2.7969
oy, (cm) 0.0771 0.0721 0.0743
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
J6 0.2506 0.3223 0.2421 0.3157 0.2583 0.3245
J; 0.5252 0.8514 0.4942 0.8437 0.4974 0.8097
Jg 0.0491 0.0662 0.0463 0.0674 0.0520 0.0611
Jg 0.0539 0.0677 0.0594 0.0729 0.0431 0.0549
Jio 0.0350 0.0269 0.0373 0.0295 0.0382 0.0266
max [u] (volts) 2.4737 1.9540 2.4188 2.0424 2.6109 1.8224
max|f| (kN) 10.1196 7.7831 10.7916 8.5367 11.0252 7.6821
max|Xxp| (cm) 0.3166 0.2502 0.2989 0.2548 0.3355 0.2311
Three-Sensor Casey, = [X,, X5 X,5]' Yy = [Xp Xaa Tl
(5) (6) (1) (8)
N 0.1681 0.1568 0.1831
s 0.3545 0.3377 0.3802
J3 0.0328 0.0312 0.0367
N 0.0341 0.0331 0.0370
Jg 0.0091 0.0094 0.0090
o, (volts) 0.5948 0.5846 0.6495
g (kN) 2.6187 2.7268 2.6008
Ox, (cm) 0.0768 0.0730 0.0858
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
Jg 0.2559 0.3276 0.2408 0.3166 0.2705 0.3333
J7 0.5316 0.8603 0.4935 0.8438 0.5522 0.8126
Jg 0.0495 0.0606 0.0468 0.0675 0.0559 0.0631
Jo 0.0515 0.0666 0.0602 0.0737 0.0496 0.0610
Jio 0.0354 0.0271 0.0375 0.0294 0.0352 0.0242
max|ul (volts) 2.4669 1.7905 2.4220 2.0457 2.7256 1.8084
max|f| (kN) 10.2325 7.8390 10.8343 8.4854 10.1765 6.9796
max |Xxp| (cm) 0.3196 0.2292 0.3015 0.2553 0.3606 0.2387
One-Sensor Casey, = [X,,] y, = [f]
9) (10) (11) (12)
N 0.1620 0.1575 0.1905
J 0.3409 0.3390 0.3927
J3 0.0347 0.0312 0.0394
s 0.0362 0.0330 0.0398
J5 0.0086 0.0094 0.0090
oy (volts) 0.6297 0.5848 0.6930
g (kN) 2.4967 2.7269 2.5927
oy, (cm) 0.0812 0.0731 0.0922
El Centro Hachinohe El Centro Hachinohe El Centro Hachinohe
J6 0.2497 0.3256 0.2404 0.3190 0.2798 0.3367
J; 0.5188 0.8578 0.4888 0.8357 0.5748 0.8162
Jg 0.0531 0.0640 0.0473 0.0666 0.0588 0.0640
Jg 0.0558 0.0717 0.0563 0.0715 0.0530 0.0648
Jio 0.0346 0.0273 0.0373 0.0293 0.0354 0.0233
max [u] (volts) 2.6677 1.8869 2.3976 2.0157 2.8488 1.8233
max|f| (kN) 10.0112 7.9026 10.7788 8.4632 10.2429 6.7449
max|Xp| (cm) 0.3426 0.2421 0.3049 0.2516 0.3795 0.2421
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