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Abstract

In this paper we develop a robust controller design for the active mass driver (AMD) bench-
mark problem. The design process is based around the D-K iteration procedure for (complex)
� synthesis, together with a balanced truncation procedure to reduce the controller order. The
�nal design is a third order linear controller, which utilizes only four accelerometer measure-
ments, and has desirable rollo� properties (i.e., small required bandwidth, and a high degree of
robustness). Despite the simplicity of the controller, it is able to yield quite good performance,
while using only modest control authority.

Keywords: structural control, active, optimal, robust

1 Introduction

The active mass driver (AMD) benchmark problem provides a fairly realistic testbed for the study
of control algorithms applied to civil engineering structures. The problem is based on an experi-
mental setup in the Structural Dynamics and Control/Earthquake Engineering Laboratory at the
University of Notre Dame. The experiment consists of a three story test structure equipped with an
active mass driver actuation system and accelerometer/displacement sensors. These are controlled
by a DSP-based real-time digital feedback control system. A full description of the benchmark
problem, including system models and design requirements/constraints, may be found in [1] (see
also the Web Site at http://www.nd.edu/~ quake/). A very brief description is given in section 3.

The control design approach we use here is based on theD-K Iteration procedure for � synthesis.
An overview of this approach is included in section 4 to illustrate the application of this design
procedure to controller synthesis. The speci�c application to the benchmark problem is covered
in detail in section 5, including the selection procedure for the design interconnection and the
corresponding weighting functions.

The resulting controller, after some further simpli�cations/transformations, is evaluated using
the benchmark criteria, and the results are discussed in section 6. It is seen that this design
approach o�ers a great deal of 
exibility for exploiting the various tradeo�s inherent to such a
problem (e.g., control authority versus structural vibration attenuation). Furthermore, we are able
to provide a �nal design for the controller which is very simple, has excellent robustness properties,
and delivers good performance for modest control e�ort.
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2 Notation and De�nitions

The notation used here is fairly standard. For any matrix (or vector), M , we denote the transpose
by MT , and the complex conjugate transpose by M�. The largest singular value is denoted by
�(M). We denote the k� k identity matrix by Ik. Occasionally we will drop the subscript from I,
whence it denotes an identity matrix of the appropriate size (from context).

We de�ne the �eld of complex numbers by C, and de�ne RM to be the space of real-rational
proper transfer matrices. A State Space representation for a transfer matrix P 2 RM is denoted
by

P =

�
A B
C D

�
:
= C(sI �A)�1B +D (1)

and we will refer to such representations of elements of RM as State Space systems. We de�ne
RH1 to be the subspace of RM with elements analytic in Re(s) � 0, also referred to as stable
systems. Given a transfer matrix P 2 RH1 we denote its in�nity norm by

kPk1 :
= sup

!2R

�(P(j!)) (2)

The de�nition of the structured singular value, �, is dependent upon the underlying block
structure of the uncertainties, which is de�ned as follows. Suppose we have a matrix M 2 Cn�n
and a non-negative integer m � n. Then the block structure K(m) is anm-tuple of positive integers

K = (k1; : : : ; km) (3)

This m-tuple speci�es the dimensions of the perturbation blocks, and we require
Pm

i=1 ki = n

in order that these dimensions are compatible with M . This determines the set of allowable
perturbations, namely de�ne

XK = f� = block diag (�C
1 ; : : : ;�

C
m) : �

C
i 2 Cki�kig (4)

Note that XK � Cn�n. All the machinery presented here is easily generalized to the case where
the uncertainty blocks need not be square. In fact allowing non-square blocks is often useful in
practice (indeed we will use non-square blocks for the AMD problem). However, although this
generalization adds little di�culty to the problem, it does makes the notation very cumbersome,
and so, for clarity of exposition, we will present all the analysis/design tools in this paper for the
set-up in (4).

It is also possible to extend these tools to handle more general uncertainty classes, which can
include real parametric uncertainty. This leads to the so-called mixed (real and complex) � problem.
We will not use these results here, and so we restrict our attention to the more standard (complex)
� problem, but we refer the interested reader to [2, 3, 4, 5] and the references therein for an in-depth
treatment of the mixed � problem. The following de�nition is taken from [6]:

De�nition 1 ([6]) The structured singular value, �K(M), of a matrix M 2 Cn�n with respect to
a block structure K(m) is de�ned as

�K(M) =

�
min
�2XK

f�(�) : det(I ��M) = 0g
��1

(5)

with �K(M) = 0 if no � 2 XK solves det(I ��M) = 0.

In order to present the relevant theory we de�ne the following set of block diagonal scaling matrices
(which, like � itself, depends on the underlying block structure).

DK = fblock diag (d1Ik1 ; : : : ; dmIkm) : di 2 C; di 6= 0g (6)
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3 The Active Mass Driver Benchmark Problem

The active mass driver benchmark problem is described in detail in [1] (also see the Web Site at
http://www.nd.edu/~ quake/). The problem is based on an experimental setup in the Structural
Dynamics and Control/Earthquake Engineering Laboratory at the University of Notre Dame, which
consists of a three story single-bay structure which is equipped with an active mass driver (AMD)
system, consisting of a single hydraulic actuator with an attached steel mass. The position of
the mass is measured via a linear variable displacement transducer (LVDT) with a local position
feedback control loop to stabilize the actuator. The LVDT position measurement is available for
control purposes, along with 5 accelerometer measurements: one located on the actuator mass;
one measuring the ground excitation; one on the 
oor of each bay of the structure (for a total
of three). Additionally, �ve pseudo-velocity measurement are available, obtained by �ltering the
accelerometer measurements with approximate integrators. These measurements are fed back to
a DSP-based real-time digital controller, which can then command the AMD system. The DSP
controller utilizes A/D and D/A converters which have 12 bit precision, a span of �3V, and operate
at 1kHz. The controller is limited to 12 states, with an associated computation delay of 200�s. See
[1] for a detailed description of the experimental setup (including schematics and photographs).

Two models of this setup are provided in the benchmark problem, both of which correspond to
�gure 1, where �xg is the ground acceleration, ~u is the (delayed) control signal, ~z are the signals to
be controlled, and ~y are the measurements, namely:

~z = (x1 x2 x3 xm _x1 _x2 _x3 _xm �xa1 �xa2 �xa3 �xam)
T

~y = (xm �xa1 �xa2 �xa3 �xam �xg)
T (7)

where xi ( _xi) is the displacement (velocity) of the ith 
oor relative to the ground, xm is the
displacement of the AMD mass, �xai is the absolute acceleration of the ith 
oor, and �xam is the
absolute acceleration of the AMD mass.

�

�

�

Plant
� ~u

~z

~y

�xg

Figure 1: Benchmark problem open-loop plant model

Two models of this system are provided, namely an evaluation model of the plant, and a design

model of the plant. The design model of the plant is a fairly simple 10 state model of the system,
intended to be used in the controller design process (where very high �delity models are often
not available). The evaluation model of the plant is a high �delity 28 state model of the system,
which serves as our \true" representation of the plant. This model is used after the design to
evaluate each controller via simulation. The primary goal of the controller design is to provide
structural vibration attenuation for this setup during an earthquake. The benchmark problem
includes a detailed simulink model to re
ect the above setup and constraints, which provides for
closed-loop simulation using a pseudo-random disturbance weighted with a Kanai-Tajimi spectrum,
and recorded signals from the El Centro and Hachinohe earthquakes. Based on these simulations,
a number of additional design constraints on the controller authority, and a set of performance
evaluation criteria, J1 - J10, are de�ned in [1].
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4 Controller Synthesis Techniques

Consider the general synthesis problem illustrated in �gure 2. In this �gure P 2 RM is the nominal
transfer matrix (assumed to be known), andK 2 RM is the controller (to be designed). The closed
loop system is perturbed by a structured uncertainty�. In this �gure the signals w; z; y; u represent
exogenous disturbances, error signals, measurements, and control signals respectively. These are
vector signals of dimension nw; nz; ny; nu respectively. The general design problem we will consider
is to choose K so as to meet robust performance, i.e., choose K so that the perturbed closed loop
system is stable, and the gain from exogenous disturbances (w) to error signals (z) is small, for all
allowable �.

P

�

K

-

�

-

�

� � wz

y u

Figure 2: Feedback interconnection for � synthesis

We will make the above de�nition rigorous shortly, but �rst we would like to make some brief
remarks about the motivation for this problem. Note �rst of all that there is no particular structure
imposed on P 2 RM. This gives us a very general problem, and in fact it is easy to rearrange any
linear fractional interconnection of systems and uncertainties into the canonical form of �gure 2 by
simple block diagram manipulations. In particular the uncertainty descriptions and performance
goals can both be weighted, though not shown as such in �gure 2, since one may simply absorb all
the weights into P. There is extensive engineering motivation for this problem, and we refer the
interested reader to [7, 2, 3] and the references therein.

Since the (complex) uncertainties are typically used to cover unmodeled dynamics, then we
wish to be able to consider perturbations which are themselves dynamical systems, with the block
diagonal structure of the set X

K̂
. Associated with any block structure X

K̂
, letM �

X
K̂

�
denote the

set of all real-rational, proper, stable, block diagonal transfer matrices, with block structure like
X
K̂
:

M �
X
K̂

� :
=
�
� 2 RH1 :�(j!) 2 X

K̂
for all ! 2 R	 (8)

In this context we interpret the (complex) uncertainties as the frequency response of any unmodeled
dynamics.

Let Tzw denote the transfer matrix from w to z in �gure 2. Our performance goal is to keep the
gain of this transfer matrix small (since this is the transfer matrix from disturbance to error) and
we will measure this gain as kTzwk1. Our robust performance goal can thus be stated rigorously
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as: Choose K 2 RM so that the perturbed closed loop system in �gure 2 is stable, and kTzwk1 � 1,
for all � 2M �

X
K̂

�
with k�k1 < 1.

This problem can be converted into a � synthesis problem as follows. First de�ne an augmented
uncertainty structure XK as

XK
:
= fblock diag (�;�p) : � 2 X

K̂
;�p 2 Cnw�nzg (9)

The perturbation �p is a \performance block" and by closing the loop from z to w with �p (i.e.,
let w = �pz) the robust performance problem is converted to a robust stability problem, which
can be tackled directly with �. The situation is illustrated in �gure 3.

P

�

�p

K-

�

-

�

y u

M(P;K)

Figure 3: Equivalent robust stabilization problem

We de�neM(P;K) as the nominal closed loop transfer matrix formed from P andK (see �gure
3). To be explicit given any P;K as above then partition P in the obvious way as

P =

�
P11 P12

P21 P22

�
(10)

where P22 has ny outputs and nu inputs. Then M(P;K) is de�ned by the standard Linear Frac-
tional Transformation formula as

M(P;K)
:
= P11 +P12K (I �P22K)�1P21 (11)

With these de�nitions we have the following well known robust performance theorem.

Theorem 1 Suppose that the nominal system M(P;K) is stable. Then the perturbed closed loop

system in �gure 2 is stable, and
kTzwk1 � 1 (12)

for all � 2M �
X
K̂

�
with k�k1 < 1 i�

sup
!2R

�K(M(P;K)(j!)) � 1 (13)
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In light of this result our goal becomes that of the general � synthesis problem, namely that of
�nding a controller K 2 RM achieving:

inf
K2KS

sup
!2R

�K(M(P;K)(j!)) (14)

where KS denotes all K 2 RM that render M(P;K) internally stable (i.e., the set of nominally

stabilizing controllers).

4.1 � Analysis Methods

Before considering the � synthesis problem we �rst very brie
y review the � analysis problem, i.e.,
givenM 2 Cn�n how does one compute �K(M)? In fact the general analysis problem appears to be
computationally intractable (except for small problems or special cases). Nevertheless approximate
computation methods have been developed which rely on readily computable upper and lower
bounds (see [5, 4] respectively). In this paper we will concentrate on the upper bound, since that
actually provides a robustness guarantee. The following well-known result is taken from [6].

Theorem 2 ([6]) For any matrix M 2 Cn�n and any compatible block structure K

�K(M) � inf
D2DK

�(DMD�1) (15)

The reason that this upper bound is useful is that it can be computed e�ciently. It can be reformu-
lated as a Linear Matrix Inequality (LMI) minimization, and hence a (quasi) convex optimization
problem [5]. E�cient software for this bound is now available commercially [8] as part of the
�-Tools Matlab toolbox [9].

4.2 H1 Optimal Control

The H1 optimal control problem can be viewed as a special case of the above � synthesis problem,
where there are no uncertainties (i.e., m = 0). Thus we have only �p (and not �) in �gure 3, and
hence only a nominal performance (and stability) requirement. The problem thus becomes that of
�nding a controller K 2 RM achieving

inf
K2KS

kM(P;K)k1 (16)

This illustrated in �gure 4. Note that here, since there are no uncertainties, M(P;K) becomes
simply the transfer matrix from w to z in �gure 4.

It turns out that �nding a (sub) optimal solution to the above is a convex problem, so that
the globally optimal controller can be found. The solution was obtained by Doyle et al. in [10],
and involves the solution of two Riccati equations. Software for computing the H1 (sub) optimal
controller is now commercially available [11]. This special case can be used to tackle more general
problems (and in particular the � synthesis problem), by using an appropriately constructed P in
the above synthesis problem.

4.3 � Synthesis and D-K Iteration

Here we brie
y review the � synthesis problem. For a more detailed exposition see [12, 13]. As we
have already discussed, computing � is di�cult and we are forced to resort to computing bounds.
Fortunately the upper bound is typically very good, and in fact for the type of problems considered
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Figure 4: Standard framework for H1 optimal control

here no example with a gap larger than 15% (between � and its upper bound) has been found.
Thus we consider the problem given by replacing � by its upper bound in (14), namely

inf
K2KS

sup
!2R

inf
D(!)2DK

�(D(!)M(P;K)(j!)D�1(!)) (17)

Note that if we �x K then the problem of �nding D(!) is just the standard � upper bound problem
(across frequency) which is a convex problem and can be e�ciently solved. If we choose D(!)
matrices at a set of frequency points (from the � upper bound) we can �t a real-rational, stable,
minimum-phase transfer matrix to them. If we �x this transfer matrix, D, then the problem of
�nding K can be reduced to a standard H1 problem. This is explained in more detail below.

The above approach leads to the following D-K iteration scheme, which attempts to �nd a �
optimal controller (and hence attempts to optimize robust performance for problems with structured
dynamic uncertainty):

Procedure 1 (D-K Iteration)

1. Find an initial estimate of the scaling matrices D(!) pointwise across frequency. One possi-

bility is to use the identity matrix at each point.

2. Find any State Space realization, D�t, �tting the pointwise scaling matrices D(!) in magni-

tude. Factor out an all-pass function to yield D as a stable minimum phase system (so that
D and D�1 are stable) with the same magnitude as D�t. Augment this with identity matrices

as

DL
:
= block diag (D; Iny ) DR

:
= block diag (D�1; Inu) (18)

and construct the State Space system

PD
:
= DLPDR (19)

so that by construction we have (see �gure 5).

M(PD;K) = DM(P;K)D�1 (20)

3. Find the H1 optimal controller K̂ minimizing kM(PD;K)k1 over all stabilizing, proper,

real-rational controllers K.
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4. Find D̂(!) solving the minimization problem

inf
D(!)2DK

�(D(!)M(P; K̂)(j!)D�1(!))

pointwise across frequency.

5. Compare D̂(!) with the previous estimate D(!). Stop if they are close, else replace D(!)
with D̂(!) and return to step 2.

This iteration (assuming perfect State Space realizations of D(!)) results in kM(PD;K)k1 being
monotonically nonincreasing, so that we are guaranteed convergence of the scheme. Having con-
verged then the controller K̂ from step 3 is the resulting � synthesis controller. Note that although
the individual problems (the � upper bound andH1 optimal control) are convex, the joint problem
is not convex (see [12] for a counterexample to convexity). Thus the D-K iteration described above
is not guaranteed to converge to the global optimum of (17), and in fact it may converge to a
saddlepoint of the problem which is not even a local minimum (with respect to D and K jointly).
However many designs have been performed using this technique in recent years (see [14, 15] for
example), and it has usually been found to work well in practice. There are further subtleties to
the above procedure, which we will not go into here (see [13, 9] for more details).

D D�1�� � �

-

P
�

PD

K

z w

y u

Figure 5: D-K Iteration as an H1 optimal control problem

This D-K iteration scheme is the basis of � synthesis controller design. The design process
consists essentially of the following stages.

Procedure 2 (� Synthesis)

1. Decide on an appropriate interconnection structure to model the system, including the uncer-

tainty structure against which robustness is desired.

2. Choose appropriate weights to re
ect the desired performance speci�cations, and any infor-

mation known about the uncertainties.

3. Implement the above D-K iteration. Note that this involves deciding on an appropriate fre-

quency range of interest, and selecting the order of the State Space �t in step 2.
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This procedure is by no means mechanical, and a good deal of engineering judgement is still
required, particularly in steps 1 and 2. Also, as with any control design technique, the full design
process may well involve an iterative application of the above process, together with an evaluation
of each resulting controller.

4.4 Controller Order Reduction and Balanced Truncation

Having obtained a design, it is often desirable, for numerical and implementation reasons, to reduce
the number of states in the controller. Here we very brie
y review the balanced truncation technique
for controller order reduction. For a more detailed treatment we refer the interested reader to [16].
For a stable state space system K,

K =

�
Ak Bk

Ck Dk

�
(21)

the controllability (P ) and observability (Q) grammians are de�ned as the solutions of the following
Lyapunov equations:

AkP + PATk +BkB
T
k = 0

ATkQ+QAk + CT
k Ck = 0 (22)

A balanced realization is a State Space representation in which these Grammians are equal and
diagonal:

P = Q = � = diag (�1; : : : ; �nk) (23)

where nk is the order of K. In light of this, the above Hankel Singular Values (HSV) , �i, of the
system represent the degree to which each state is both controllable and observable. Hence we
may delete states whose HSV is small to produce a reduced order model Kred, whose input-output
properties should not di�er greatly from K. In fact it can be shown that if the �i are in decreasing
order, and we delete the smallest (nk � nred) balanced states (so that Kred is of order nred) then
we are guaranteed that:

kK�Kredk1 � 2
nkX

i=nred+1

�i (24)

Thus, one choice for model reduction is to �rst employ a State Space similarity transformation to
yield a balanced realization of the system, and then truncate this system by deleting the undesirable
states. This process is referred to as balanced truncation.

5 Application to the Benchmark Problem

The benchmark problem provides us with a model of the open-loop plant, including models for
the sensors and actuator. In order to apply the � synthesis design technique to the benchmark
problem, we �rst need to decide on the design system interconnection. This will specify:

1. What uncertainties are present in the system?

2. Which disturbance signals act on the system?

3. Which signals do we wish to penalize in the optimal control problem?

4. What measurements will the controller use?
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After several design iterations, we came up with the interconnection shown in �gure 6, where the
signals ẑ; ŷ are given as:

ẑ = (d1 d2 d3 �xa1 �xa2 �xa3 xm _xm �xam)
T (25)

ŷ = (�xa1 �xa2 �xa3 �xam)
T (26)

The above four questions are addressed in the selection process for the design interconnection
structure, as follows:

1. The design includes two uncertainties. Firstly there is additive uncertainty, �a, on the plant
model. Note that the design model is obtained via a model reduction procedure on a higher
order evaluation model, which is a more accurate representation of the true system (see
[1] for details). Thus we clearly need this uncertainty to account for unmodeled dynamics,
particularly at high frequency. However it is important to note that some uncertainty of this
type would always be required for a robust design, even if we used the more accurate model,
because no model will exactly capture the behavior of the true system. We also include
some multiplicative uncertainty, �m, on the AMD, to account for de�ciencies in the actuator
model. These uncertainty descriptions are very important in the design process, to prevent
the optimal control design from being too aggressive. This can lead to controllers which
exploit the model properties to such an extent that they perform very well in simulation, but
not at all well on the actual system. For the benchmark problem an attempt to capture this
e�ect is made by using the low order design model of the plant for controller synthesis, and
a more accurate evaluation model of the plant for the simulations.

2. The choice of disturbance signals for the design is fairly natural. Clearly we wish to consider
the ground acceleration due to the earthquake as one disturbance signal. In any meaningful
problem there is always sensor noise present, and so we also include this as a disturbance
signal. Note also that without the sensor noise disturbance one has a singular control problem,
which leads to numerical di�culties.

3. The choice of which signals to penalize is also fairly natural. The performance criteria for the
benchmark problem are all speci�ed in terms of the nine signals d1; d2; d3; �xa1; �xa2; �xa3; xm; _xm; �xam,
which correspond to interstory drift on each 
oor, absolute acceleration of each 
oor, and the
displacement/velocity/acceleration of the AMD system. Thus we wish to penalize these sig-
nals, hence the (weighted) penalty on ẑ. In addition, for any control design we always wish
to limit the control authority, and so we include a (weighted) direct penalty on the control
signal, u. Again, this is desirable from a numerical viewpoint to avoid a singular control
problem.

4. The choice of measurements to use in the controller is more di�cult. We did not use the
pseudo-velocity measurements since, from an optimal control viewpoint, these signals provide
no additional information content (they are merely �ltered versions of signals the controller
already has access to). Our goal was to only use the accelerometer measurements from each

oor and from the AMD, �xa1; �xa2; �xa3; �xam, since these are measurements that one could
reasonably expect to have available in a (full-scale) �eld setup. However, the initial designs
were performed using also the ground acceleration and AMD displacement �xg; xm, so as
to determine the best control design we could provide. Having obtained this design, we
determined that the controller gains for these two measurements were the least signi�cant,
which suggested that one could obtain similar performance without using them. Thus, the
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controller was redesigned using only the four accelerometer measurements, ŷ, in �gure 6.
This �nal design provided almost the same level of performance as the initial design using all
the available measurement information. This illustrates one of the advantages of an optimal
controller synthesis procedure. Not only were we able to come up with a design using a
small number of measurements, but we could also quantify the loss in performance resulting
from not using all the measurements. This loss was acceptably small. An analysis of the
�nal design showed that all the controller gains were signi�cant, so we would expect some
degradation in performance if we tried to use even fewer measurements. Since we had already
met our goal in this regard, we did not attempt any further reduction in the measurements.

h

h
Plant red

Dist out

Sens in

K Pade

Cont out

Wao �a Wai

Wmo �m Wmi

Dist in��

?

?
- -

- -

-

h

-

+
��

� �

���

6

����
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ẑ

ŷ

u ~uy
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Structural
Vibration
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Control
Authority

Sensor
Noise

+ +

+

+
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Figure 6: Interconnection for � synthesis design

The interconnection system shown in �gure 6 includes the following elements:

Transfer Matrices:

Plant red: This is the nominal transfer matrix of the system from ground acceleration and (delayed)
control input, �xg; ~u, to the penalty signals and measurements ẑ; ŷ. It is straightforward to
obtain this model from the design model of the plant provided in the benchmark problem
(yielding Plant red with 10 states, 13 outputs, and 2 inputs).
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Pade: This system is given as

Pade =
�s + 104

s + 104
(27)

and is a �rst order Pade approximation to a time delay of 200�s, included to account for the
computation time required by the DSP controller.

Weights:

Wao;Wai: These weights were chosen based largely on the di�erence between the evaluation and design

plant models, so that the additive uncertainty could account for unmodeled dynamics in the
system.

Wao(s) =
13s2 + 243:4s + 2637

s2 + 71:3s+ 2623:4
(28)

Wai = 0:01I6 (29)

Wmo;Wmi: These weights were simply chosen to include 0.2% actuator uncertainty:

Wmo =
p
0:02 (30)

Wmi = 0:1
p
0:02 (31)

Dist in: This weight was chosen to re
ect the frequency content of the Kanai-Tajimi power spectral
density:

Dist in(s) =

p
S0(2�g!gs+ !2g)

s2 + 2�g!gs+ !2g
=) jDist in(j!)j2 =

S0(4�
2
g!

2
g!

2 + !4g)

(!2 � !2g)
2 + 4�2g!

2
g!

2
(32)

Worst-case values were selected as S0 = 0:1, �g = 0:3, !g = 37.3 rad/s.

Dist out: This weight can be used to vary the penalty placed on each of the nine signals in ẑ. Our
performance goal was to have each of the performance indices J1 � J10 below one. These
goals relate naturally to the signals in ẑ, and hence the weights in Dist out. After a number
of design iterations our �nal weight selection was:

Dist out = diag (0:002; 0:0015; 0:001; 0:01; 0:015; 0:02; 0:0004; 0:055; 0:2) (33)

Sens in: These weights are chosen to re
ect 1% sensor noise in each measurement:

Sens in = diag (0:02; 0:03; 0:04; 0:04) (34)

Cont out: This weight was chosen to penalize the use of large control signals. Cont out is a high-pass
�lter (see �gure 7 for a Bode magnitude plot) which places a very high penalty on signals above
35Hz (220 rad/s). This ensures that the controller rolls o� adequately at high frequencies (so
as not to excite high frequency modes), and does not require excessive bandwidth.

Cont out(s) =
0:55s + 13:62

s+ 285:1
(35)
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Figure 7: Bode magnitude plot for Cont out

This design interconnection results in a P (see �gure 2) with 16 states, 16 outputs and 11 inputs.
The uncertainty structure is given as

XK =
n
block diag (�a;�m;�p) : �a 2 C4�1;�m 2 C1�1;�p 2 C5�10

o
(36)

with 4 measurements in y and one control signal in u. The D-K Iteration for controller synthesis
outlined in section 4.3 was carried out for this interconnection. It was found that constant D-scales
were adequate for the design, so the resulting � synthesis controller was 16th order. This design
yielded a peak value for � across frequency of 0.88, and �K(M(P;K)(j!)) is plotted in �gure 9.
Note that the robust performance is dominated by the �rst mode of the structure at 36.5 rad/s,
and � is very small away from this frequency. Thus it appears that the performance speci�cations
for this problem are dominated by the need to get good control of the �rst vibration mode of
the structure. This is con�rmed by examining the plot in �gure 8, which shows �(T (j!)) plotted
against frequency, for both the open and closed loop systems. Here T (s) is the transfer matrix
from �xg to (d1 d2 d3 �xa1 �xa2 �xa3)

T . Thus it represents the gain from the ground excitation to
the vibration of the structure. It is clear that the controller provides large attenuation of the �rst
mode at 36.5 rad/s, some attenuation of the second mode at 111 rad/s, and little e�ect on any
higher order modes.
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Figure 8: �(T (j!)) for the open (solid) and closed (dashed) loop systems

The fact that the peak value of � across frequency is less than one means that we have met all
our robust performance goals. Furthermore, since � is very small above 50 rad/s, we have a very
high degree of robustness to any uncertainties in the higher order modes.
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Figure 9: Robust performance � plot

Note that the solution of the H1 optimal control problem always returns a controller of the
same order as the design interconnection, and hence (if we include D-scales) so does � synthesis.
However, many of the controller states may be operating at high frequency, and hence contributing
very little to the performance. Examining the Hankel Singular Values of this controller revealed
that only the �rst three were signi�cant, and so the balanced truncation procedure outlined in
section 4.4 was used to reduce to a 3rd order controller. Repeating the above � analysis with this
controller revealed a negligible increase in the peak value of �, and hence a negligible loss of robust
performance.

The �nal stage of the design was to convert this continuous-time controller to a discrete-time
controller operating at 1kHz, by implementing a bilinear transformation. Note that the e�ects
of a discrete-time implementation of the controller have already been accounted for in the design
process, by the use of the Pade approximation to the computation time delay.

6 Results and Discussion

We chose a performance goal for our design of keeping all the performance measures J1 - J10 below
one (note that this requirement is not met by the H2 optimal control design example provided in
[1], because of the di�culty of keeping J10 small). The results from running the supplied simulation
model (which uses the full order evaluation model of the plant, and implements some constraints on
the controller in terms of sampling-time/computation delay, A/D and D/A precision/range, and
sensor noise) are tabulated in table 1. Note that J1 - J5 were calculated using �g = 0:3, !g =
37.3rad/s, and averaging over a 300 second time period. For J6 - J10 the Hachinohe earthquake
was the limiting value in each case, and the corresponding value for the El Centro earthquake is
given in parentheses.

J1 0.244 J6 0.406 (0.389)

J2 0.376 J7 0.730 (0.591)

J3 0.638 J8 0.983 (0.868)

J4 0.636 J9 0.999 (0.821)

J5 0.570 J10 0.754 (0.714)

Table 1: Performance measures for the �nal design
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It can be seen that this design meets our goals. If we consider group 1 of the measures as
J1; J2; J6; J7, then these correspond to the structural vibration attenuation of the system, and
hence lower numbers here correspond to smaller interstory drift and absolute acceleration of the
bays of the structure. Group 2 of the measures, J3 - J5 and J8 - J10, corresponds to the displace-
ment/velocity/acceleration of the AMD system. Thus, these values reveal the control e�ort we
expend. It is clear that there is a natural tradeo� between group 1 (vibration attenuation) and
group 2 (control e�ort) of the measures, and we would expect that the control designer can reduce
the numbers in group 1 at the expense of increasing those in group 2. Indeed this is the case and
it is fairly easy to produce an array of designs, whereby vibration attenuation is traded o� against
control e�ort, by varying the weight selection in the design interconnection in �gure 6. For reasons
of brevity we do not include the details here.

This controller design meets all of the constraints. It is a 3rd order discrete-time controller
(operating at 1kHz), which is itself stable, and it stabilizes the closed-loop system (both veri�ed
by eigenvalue analysis). The peak/allowed values for various signals obtained from the above
simulations are tabulated in table 2.

Constraint Kanai-Tajimi Hachinohe El Centro
RMS Allowed % Max Allowed % Max Allowed %

u 0.21 1 21 0.45 3 15 0.83 3 28

xm 0.84 3 28 1.63 9 18 2.93 9 33

�xam 1.02 2 51 1.95 6 32 3.60 6 60

Table 2: Performance constraints for the �nal design

Note that this design is not very aggressive, since it easily passes all the required constraints,
with the largest value being 60% of the allowed maximum for �xam for the El Centro earthquake.
In light of this it seems likely that we could obtain better vibration attenuation for this problem
with a more aggressive design. Indeed we were able to produce designs with signi�cantly higher
performance, at the expense of increased control e�ort (we do not include them here for reasons
of brevity). Note however that this increases the performance measures in group 2 (control e�ort),
and our stated goal was to keep all the measures below one.

The continuos-time version of the controller is given in State Space form as:

K =

0
BBB@

-9.6293 28.6195 -14.1659 0.5983 0.8746 1.2081 -0.5156
-28.4550 -10.9452 27.0656 0.6523 0.6011 0.8082 -0.4113
8.0171 -14.2982 -10.0320 -0.1379 -0.4698 -0.3309 -0.8106

1.6877 -1.2685 1.0031 0 0 0 0

1
CCCA (37)

Note that it is strictly proper and stable. The Bode plots for the controller are given in �gure 10,
which shows that each of the (four) controller gains is signi�cant. This controller was designed
to be robust, as veri�ed by the � plot in �gure 9. As a result, the controller gains appear well
behaved, with no sharp resonances, and all the gains roll o� well before 35Hz (220 rad/s) so that
the controller bandwidth is not excessive. The robustness of this design is best veri�ed via a � plot
as discussed earlier, but in order to facilitate comparison with other approaches the benchmark
robustness test suggested in [1] was also carried out. The loop gain transfer function is plotted in
�gure 11, and the suggested criterion is that it should remain below -5dB above 35Hz (220 rad/s).
It can be seen that the design easily meets this robustness criterion, and in fact the loop gain
remains below -25dB for frequencies above 35Hz (220 rad/s).
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Figure 10: Bode magnitude plots for controller
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Figure 11: Loop gain for the �nal design

It appears that the � synthesis procedure is an e�ective design approach for this problem. We
are able to provide a simple linear controller, which is low order with small required bandwidth,
has excellent robustness properties, and meets all of the design constraints, using only the four
accelerometer measurements. Furthermore, it delivers decent performance with good vibration at-
tenuation for only modest control e�ort, so that our criterion of keeping J1 - J10 all below one
was met. The performance tradeo� could easily be varied to yield a more/less aggressive design
as desired. The design was performed using commercially available software, and the computa-
tional requirements were not excessive. Designs using this approach can readily be performed in a
reasonable time using a PC.

7 Concluding Remarks

This problem placed high performance requirements on the �rst mode of the structure, together
with robustness requirements on the higher order modes. Robust designs are required so as to avoid
spillover problems, which are an important consideration in controller design for civil engineering
applications. At the same time the controller should use limited actuator authority, and satisfy cer-
tain implementation constraints typical of a practical setting. We found the � synthesis procedure
for robust controller design to be an excellent vehicle for studying these tradeo�s in a systematic
fashion, and we were able to design a simple controller which met the above requirements. The
controller had a low order, and a small required bandwidth, both of which are desirable properties
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often lacking in optimal control designs.

References

[1] B. F. Spencer Jr., S. J. Dyke, and H. S. Deoskar, \Benchmark Problems in Structural Control
- Part I: Active Mass Driver System," to appear in Proceedings of the ASCE 1997 Structures

Congress.

[2] P. M. Young, M. P. Newlin, and J. C. Doyle, \� analysis with real parametric uncertainty," in
Proceedings of the 30th Conference on Decision and Control, pp. 1251{1256, 1991.

[3] P. M. Young, Robustness with Parametric and Dynamic Uncertainty, PhD thesis, California
Institute of Technology, 1993.

[4] P. M. Young and J. C. Doyle, \Computation of � with real and complex uncertainty," in
Proceedings of the 29th Conference on Decision and Control, pp. 1230{1235, 1990.

[5] M. K. H. Fan, A. L. Tits, and J. C. Doyle, \Robustness in the presence of mixed parametric
uncertainty and unmodeled dynamics," IEEE Transactions on Automatic Control, vol. 36,
pp. 25{38, 1991.

[6] J. C. Doyle, \Analysis of feedback systems with structured uncertainty," IEE Proceedings,

Part D, vol. 129, pp. 242{250, November 1982.

[7] A. K. Packard and J. C. Doyle, \The complex structured singular value," Automatica, vol. 29,
pp. 71{109, 1993.

[8] P. M. Young, M. P. Newlin, and J. C. Doyle, \Practical computation of the mixed � problem,"
in Proceedings of the American Control Conference, pp. 2190{2194, 1992.

[9] G. J. Balas, J. C. Doyle, K. Glover, A. K. Packard, and R. S. Smith, \The � analysis and
synthesis toolbox," MathWorks and MUSYN, 1991.

[10] J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, \State space solutions to H2 and
H1 control problems," IEEE Transactions on Automatic Control, vol. 34, pp. 831{847, August
1989.

[11] G. J. Balas, A. K Packard, J. C Doyle, K. Glover, and R. Smith, \Development of advanced
control design software for researchers and engineers," in Proceedings of the American Control

Conference, pp. 996{1001, 1991.

[12] J. C. Doyle, \Structured uncertainty in control system design," in Proceedings of the 24th

Conference on Decision and Control, pp. 260{265, 1985.

[13] G. Stein and J. C. Doyle, \Beyond singular values and loop shapes," Journal of Guidance,

Control and Dynamics, vol. 14, pp. 5{16, January 1991.

[14] G. J. Balas, C. Chu, and J.C Doyle, \Vibration damping and robust control of the JPL/AFAL
experiment using �-synthesis," in Proceedings of the 28th Conference on Decision and Control,
pp. 2689{2694, 1989

17



[15] G. J. Balas and J. C. Doyle, \Robustness and performance tradeo�s in control design for

exible structures," in Proceedings of the 29th Conference on Decision and Control, pp. 2999{
3010, 1990.

[16] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, New Jersey,
1996.

18


