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Abstract

The magnetorheological (MR) damper is one of the most promising new devices for struc-
tural vibration reduction. Because of its mechanical simplicity, high dynamic range, low power
requirements, large force capacity and robustness, this device has been shown to mesh well with
application demands and constraints to offer an attractive means of protecting civil infrastructure
systems against severe earthquake and wind loading. In this paper, an overview of the essential
features and advantages of MR materials and devices is given. This is followed by the derivation
of a quasi-static axisymmetric model of MR dampers, which is then compared with both a simple
parallel-plate model and experimental results. While useful for device design, it is found that
these models are not sufficient to describe the dynamic behavior of MR dampers. Dynamic
response time is an important characteristic for determining the performance of MR dampers in
practical civil engineering applications. This paper also discusses issues affecting the dynamic
performance of MR dampers, and a mechanical model based on the Bouc-Wen hysteresis model
is developed. Approaches and algorithms to optimize the dynamic response are investigated, and
experimental verification is provided.

Keywords: MR fluids; MR dampers; Dampers; Smart damping devices; Smart materials; Hystere-
sis model; Parameter estimation; System identification; Rheological technology

1. Introduction

Over the past decade, much attention has been given to the use of active control in civil
engineering structures for earthquake hazard mitigation. These types of control systems are often
called protective systems and offer the advantage of being able to dynamically modify the
response of a structure in order to increase its safety and reliability. Although we are now at the
point where active control systems have been designed and installed in full-scale structures, the
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engineering community has yet to fully embrace this technology. This lack of acceptance stems,
in part, from questions of cost effectiveness, reliability, power requirements, etc.

In contrast, passive control devices, including base isolation, metallic yield dampers, fric-
tion dampers, viscoelastic dampers, viscous fluid dampers, tuned mass dampers and tuned liquid
dampers, are well understood and are an accepted means for mitigating the effects of dynamic
loadings [1]. However, passive devices have the limitation of not being capable of adapting to
varying usage patterns and loading conditions.

An alternative approach–offering the reliability of passive devices, yet maintaining the ver-
satility and adaptability of fully active systems–is found in semi-active control devices. Accord-
ing to the presently accepted definition, a semi-active control device is one which cannot input
energy into the system being controlled [2]. Examples of such devices include electrorheological
[3–7] and magnetorheological fluid dampers [7–20], variable orifice dampers [21–25], friction
controllable isolators and dampers [26–31], and variable stiffness devices [32–37]. In contrast to
active control devices, semi-active control devices do not have the potential to destabilize the
structure (in the bounded input - bounded output sense), and most require little power to operate.
Recent studies indicate that semi-active dampers can achieve the majority of the performance of
fully active systems [10,12,13,17,38–40], thus allowing for the possibility of effective response
reduction during both moderate and strong seismic activity. For these reasons, significant efforts
have been devoted to the development and implementation of semi-active devices. 

This paper presents results for the full-scale development of a specific class of semi-active
control devices, magnetorheological (MR) dampers, for civil engineering applications. These
devices overcome many of the expenses and technical difficulties associated with semi-active
devices previously considered.

2. MR Fluid Characteristics

Magnetorheological fluids (or simply “MR” fluids) belong to a class of controllable fluids
that respond to an applied field with a dramatic change in their rheological behavior. The essential
characteristic of MR fluids is their ability to reversibly change from free flowing, linear viscous
liquids to semi-solids having a controllable yield strength in milliseconds when exposed to a mag-
netic field. Normally, this change is manifested by a very large change in the output force of
dampers in which they are used.

The initial discovery and development of MR fluids and devices can be credited to Jacob
Rabinow at the US National Bureau of Standards in the late 1940s [41,42]. These fluids are sus-
pensions of micron-sized, magnetizable particles in an appropriate carrier liquid. Normally, MR
fluids are free flowing liquids having a consistency similar to that of motor oil. However, in the
presence of an applied magnetic field, the particles acquire a dipole moment aligned with the
external field that causes particles forming linear chains parallel to the field. This phenomenon
can solidify the suspension and restrict the fluid movement. Consequently, the yield strength is
developed. The degree of change is related to the magnitude of the applied magnetic field, and
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can occur in only a few milliseconds. A simple Bingham plasticity model [43] as shown in Fig. 1
is effective at describing the essential field dependent fluid characteristic. In this model, the total
shear stress is given by

(1)

(2)

where  = yield stress caused by the applied field;  = shear strain rate;  = amplitude of the
applied magnetic field; and  = field-independent post-yield plastic viscosity, which is defined as
the slope of the measured shear stress versus the shear strain rate. Recently Lee and Wereley [44],
and Wang and Gordaninejad [45] employed the Herschel-Bulkley model to accommodate fluid
post-yield shear thinning and shear thickening. In this model, the constant post-yield plastic vis-
cosity in the Bingham model is replaced with a power law model dependent on the shear strain
rate. However due to its simplicity, the Bingham model is still very effective, especially in the
damper design phase.

The primary advantage of MR fluids stems from their high dynamic yield strength due to
the high magnetic energy density that can be established in the fluids. A yield stress close to 100
kPa can be obtained for MR fluids with magnetic suspensions containing carbonyl iron powder
[46]. Carlson and Spencer [9] indicated that a higher dynamic yield stress would allow for smaller
device size and higher dynamic range. MR fluids can operate at temperatures from -40 to 150 
with only slight variations in yield stress [46,47]. From a practical application perspective, MR
devices can be powered directly from common, low voltage sources [48,49]. Further, standard
electrical connectors, wires and feedthroughs can be reliably used, even in mechanically aggres-
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Fig. 1.  Bingham plasticity model.
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sive and dirty environments, without fear of dielectric breakdown. Those aspects are particularly
promising in earthquake events and cost sensitive applications. The interested reader is directed to
reviews on MR fluid characterization and their applications, as presented by Carlson and Spencer
[8] and Spencer and Sain [50].

3. Full-scale seismic MR fluid damper

To prove the scalability of MR fluid technology to devices of appropriate size for civil engi-
neering applications, a full-scale MR fluid damper has been designed and built [16]. For the nom-
inal design, a maximum damping force of 200,000 N (20 tons) and a dynamic range equal to ten
were chosen. A schematic of the large-scale MR fluid damper is shown in Fig. 2. The damper uses
a particularly simple geometry in which the outer cylindrical housing is part of the magnetic cir-
cuit. The effective fluid orifice is the entire annular space between the piston outside diameter and
the inside of the damper cylinder housing. Movement of the piston causes fluid to flow through
this entire annular region. The damper is double-ended, i.e. the piston is supported by a shaft at
both ends. This arrangement has an advantage in that a rod-volume compensator does not need to
be incorporated into the damper, although a small-pressurized accumulator is provided to accom-
modate thermal expansion of the fluid. The damper has an inside diameter of 20.3 cm and a stroke
of ± 8 cm. The electromagnetic coils are wired in three sections on the piston. This results in four
effective valve regions as the fluids flow past the piston. The coils contain a total of about 1.5 km
of copper wire. The completed damper is approximately 1 m long, has a mass of 250 kg, and con-
tains approximately 6 liters of MR fluid. The amount of fluid energized by the magnetic field at
any given instant is approximately 90 cm3. A summary of the parameters for the full-scale 20-ton

Fig. 2.  Schematic of the full-scale 20-ton MR fluid damper.
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MR damper is given in Table 1. 

4. Quasi-static analysis of MR fluid dampers

During motion of the MR damper piston, fluids flow in the annular gap between the piston
and the cylinder housing. For quasi-static analysis of MR fluid dampers, assume that: 1) MR
dampers move at a constant velocity; 2) MR fluid flow is fully developed; and 3) a simple Bing-
ham plasticity model may be employed to describe the MR fluid behavior.

Several efforts have been made to develop quasi-static models for controllable fluid damper
analysis. Phillips [43] developed a set of nondimensional variables and a corresponding quintic
equation to determine the pressure gradient of the flow through a parallel duct. This approach was
utilized by Gavin et al. [4] and Makris et al. [6] in their studies. Wereley and Li [51] developed a
similar parallel-plate model utilizing a different set of nondimensional variables. Because most of
MR dampers incorporate a cylindrical geometry, an axisymmetric model is necessary to precisely
describe their quasi-static behavior. Gavin et al. [4] and Kamath et al. [52] each developed an axi-
symmetric model. Kamath et al. assumed constant yield stress in the annular gap. To account for
the radial field distribution, Gavin et al. assumed that the yield stress satisfied the inverse power
law. 

In this section, following a procedure similar to that utilized by Gavin et al. [4], a quasi-
static axisymmetric model is derived based on the Navier-Stokes equation to predict the damper’s
force-velocity behavior. The pressure gradient then can be solved numerically. In certain cases, a
substantially simpler parallel-plate model is shown to be useful to investigate the damper’s behav-

Table 1: Design parameters for the full-scale 20-ton MR damper.

Stroke ±8 cm
Fmax / Fmin 10.1 @ 10 cm/s

Cylinder Bore (ID) 20.32 cm
Max. Input Power < 50 watts

Max. Force (nominal) 200,000 N
Effective Axial Pole Length 8.4 cm

Coils 3×1050 turns

Fluid 2×10-10 s/Pa
Apparent Fluid η 1.3 Pa-s
Fluid τ0(field) max 62 kPa

Gap 2 mm
Active Fluid Volume ~90 cm3

Wire 16 gauge
Inductance (L) ~6.6 henries

Coil Resistance (R) 3×7.3 ohms

η τ 0(field)
2⁄
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ior. Experimental verification of analytical results is also provided.

4.1. Axisymmetric model
The pressure gradient along the flow is resisted by the fluid shear stress that is governed by

the Navier-Stokes equation [53]

(3)

where  = flow velocity;  = shear stress;  = radial coordinate;  = logitudinal coordi-
nate;  = fluid density; and  = pressure gradient. 

To analyze the quasi-static motion of the flow inside the damper, the fluid inertial can be
neglected [53]. In this case, Eq. (3) can be reduced to

(4)

The solution of Eq. (4) is

(5)

where  is equal to a constant which can be evaluated by the boundary conditions. But for oscil-
latory or unsteady flow, the fluid inertial must be taken into account.

Fig. 3 provides a typical shear stress diagram and velocity profile of the Bingham plastic
shear flow in the annular gap. In regions I and II, the shear stress has exceeded the yield stress;
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therefore, the fluid flows. In region C, the shear stress is lower than the yield stress, so no shear
flow occurs; this is often referred to as the plug flow region. The yield stress is assumed to be a
monotonic function of radius , therefore, one plug flow region exists when the fluid flows.

In region I, the shear stress  is given by

(6)

This is substitute into Eq. (5) and integrated once with respect to . One obtains

(7)

by imposing the boundary condition that the flow velocity at  is .
In region II, the shear stress is given by

(8)

Proceeding as in Region I with boundary condition  at outer radius  gives

(9)

Note that the flow velocity is a constant in the plug flow region because the shear stress is less
than the yield stress. The flow velocity at the boundary of the plug flow region satisfies

. Combining Eqs. (7) and (9) yields

(10)

where

(11)

Also the shear stresses  at  and  satisfy  and ;
therefore,  can be determined by using Eq. (5):

(12)
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(13)

Substitution of Eqs. (7) and (9) into Eq. (13) results in

(14)

where  = cross section area of the piston head;  = piston head velocity; and 

(15)

Fig. 4 shows a free body diagram of MR fluids through the annular duct. The equation of
motion of the fluid materials enclosed by  and  is

(16)

which yields

(17)

By using Eqs. (10–12), (14), (15) and (17), the pressure gradient of the flow ,  and
 can be solved numerically [16].

From Eq. (17), the thickness of the plug flow region can be obtained by

(18)
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which varies with the fluid yield stress . Note that flow can only be established when
, which implies that the plug flow needs to be within the gap. Otherwise, there is

no flow.
The damper output force is then computed from the equation

(19)

where ;  = effective axial pole length; and  = cross-section
area of the piston head. The shear stress diagram can be determined by Eq. (5), and the velocity
profile can be determined by

(20)

In general, the yield stress  in the axisymmetric model is related to  due to the radial dis-
tribution of the magnetic field in the gap. But when , the variation of the yield stress
in the gap can be ignored, and Eqs. (11), (12) and (15) be simplified substantially.

4.2. Parallel-plate model
Because of the small ratio between the flow

gap and the diameter of the damper piston, one
might conjecture that the axisymmetric flow field
found in the damper can be approximated as flow
through a parallel duct, as shown in Fig. 5. To be
analogous to the axisymmetric model, the parameter

 is taken to be the mean circumference of the
damper’s annular flow path which is equal to

, and  is taken to be the gap width,
equal to . 

The pressure gradient in the flow of a Bing-
ham fluid through a rectangular duct is governed by the quintic equation [43]
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(22)

and P and T are the dimensionless pressure gradient and dimensionless yield stress, defined by:

(23)

(24)

Note that when , the pressure gradient is governed by equations independent
of the dimensionless yield stress T  [43]. Therefore, a controllable yield stress can in no way affect
the resisting force of MR dampers.

If the piston head velocity , then , and Eq. (21) becomes a cubic equation for
P . This cubic equation has the realizable root at [4]

(25)

In general, Eq. (21) cannot be solved analytically, but a solution may be easily obtained
numerically. An approximate solution can be used to estimate the desired root for 
and , encompassing most practical designs in which the flow is in the opposite direc-
tion of the piston velocity

(26)

4.3. Model comparison
As mentioned previously, the distribution of the yield stress in the gap for the axisymmetric

model is related to radius . For simplicity, it is assumed to follow an inverse power law [4]

(27)

where C and n are empirical material constants. A comparison between the parallel-plate and axi-
symmetric models for  is made for the nominal design parameters of the full-scale
MR damper shown in Table 1. Note that in the parallel-plate model, the yield stress is assumed to
be a constant. Fig. 6 shows the error comparison between the axisymetric and parallel-plate mod-
els. This indicates that the maximum error between two models is no more than 0.5% for

, and less than 2% for . Therefore, the simpler parallel-plate model is seen
to be adequate for practical design.
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4.4. Quasi-static experimental results
Fig. 7 shows the experimental setup that was constructed for damper testing. The damper is

attached to a 7.5 cm-thick plate that is grouted to a 2 m-thick strong floor. The damper is driven
by a 560 kN actuator configured with a 305 lpm servo-valve with a bandwidth of 80 Hz. A
Schenck-Pegasus 5910 servo-hydraulic controller is employed in conjunction with a 200 MPa,
340 lpm hydraulic pump. The displacement of the damper is measured using a position sensor,
and a force transducer connected to the actuator measures the force.

Fig. 8a shows the measured force-displacement loops for the damper under 5.92 cm/sec tri-

0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Gap ratio (h/R2)

M
at

er
ia

l c
on

st
an

t n

-1.5

-1

-0.5

-0.5

0

0

0
0

0.
5

0.5

1

0 0.40

Fig. 6.  Error comparison between axisymmetric and parallel-plate models. 

Ap 271 cm
2

=
v0 6 cm/s=
R2 10.16 cm=
τ0 62 kPa=
η 1.3 Pa-s=

Fig. 7.  Experimental setup for 20-ton full-scale MR fluid damper.



12

angular waveform movements with the maximum magnetic field applied and with no applied
magnetic field, respectively. Under application of the maximum magnetic field, the resisting force
of the damper is 182.1 kN–within 9% of the design specification of 200 kN. The controllable
force is 164.38 kN. Moreover, the dynamic range of the damper is 10.29, which is within 0.3% of
the design specification of 10. 

Fig. 8b shows the measured force-velocity relationship and compares this with the parallel-
plate model results. In the calculation, the friction force is 6.34 kN, as obtained from the experi-
mental result. The yield stress is chosen such that the experimental results match the theoretical
results at the velocity of 3 cm/s. The analytical model is in close agreement with the experimental
results, having a maximum error of less than 2.5%.

Fig. 8.  (a) Measured force-displacement loops at the velocity of 5.92 cm/sec;
(b) Comparison of measured and predicted force-velocity behavior.
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5. Basic geometry design considerations

Based on the parallel-plate model developed and validated in the previous section, simple
equations that provide the insight as to the impact of various parameter are given; these equations
can be readily used for initial design. Also, the effects of geometry on MR damper performance,
controllable force and dynamic range, are discussed.

5.1. Controllable force and dynamic range
Controllable force and dynamic range are the two most important parameters used in evalu-

ating the overall performance of MR dampers. As illustrated in Fig. 9, the damper resisting force
can be decomposed into a controllable force  due to controllable yield stress  and an uncon-
trollable force . The uncontrollable force includes a viscous force  and a friction force .
The dynamic range is defined as the ratio between the total damper output force  and the uncon-
trollable force  as follows:

(28)

Based on the parallel-plate model,  and  are defined as:
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(30)

and  bounded to the interval  [16].
The controllable force in Eq. (29) can also be rewritten using Eq. (24) as

(31)

which indicates that the controllable force range is inversely related to the gap size . To maxi-
mize the effectiveness of the MR damper, the controllable force should be as large as possible;
therefore, a small gap size is required. 

However, a small gap size decreases the dynamic range. As can be seen from Eqs. (29) and
(30), the viscous force increases two orders of magnitude faster than the controllable force with a
small gap size, assuming that the magnetic field is saturated; consequently, the dynamic range
tends to zero. Both the controllable force and viscous force decrease as the gap size increases.
Note that the friction force is a constant; again, the dynamic range tends to zero. It is obvious that
an optimal dynamic range must exist. 

Fig. 10 provides a typical relationship between gap size, dynamic range and controllable
force. For the design parameters of the 20-ton full-scale MR damper, the maximum dynamic
range is 11.77 with a gap ratio of 0.028, and the controllable force is 113.46 kN. In the current
design, the gap size is 2 mm corresponding to the gap ratio of 0.0197. Therefore, the dynamic
range and controllable force obtained from theoretical calculation, as shown in Fig. 10, are 10.45
and 165.18 kN, respectively. When compared with the experimental results illustrated in section
4.4, where the dynamic range is 10.28 and the controllable force is 164.38 kN, an error of less
than 1.5% is observed.
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5.2. Geometry constraints
Eqs. (29) and (30) are certainly useful in the design of MR dampers; however, they often do

not provide the best insight into the significance of various parameters. Therefore, the minimum
active fluid volume  is introduced. This is the volume of MR fluids exposed to the magnetic
field, and thus it is responsible for providing the desired MR effect. Eqs. (29) and (30) can be
rewritten as [9]

(32)

where ; ; and  = pressure drop due to the yield stress. Eq.
(32) can be further manipulated to give

(33)

Note that for most of design cases, , and therefore, .
For the initial geometric design of MR dampers, one can assume that the friction force 

has the same order as the viscous force . Thus, , where  is the required dynamic
range. By knowing the required damper flow rate , dynamic range , cylinder size , yield
stress , plastic viscosity , and pressure drop , the gap size  and active pole length  can
be obtained from Eqs. (32) and (33). However, this initial design needs to be verified by a more
accurate axisymmetric model. Typically, a detailed design also involves iterations with the mag-
netic circuit design.

6. Dynamic modeling of MR dampers

Although the quasi-static models developed previously are useful for MR damper design,
they are not sufficient to describe the dynamic behavior of MR dampers. As a direct extension of
the Bingham plasticity model, an idealized mechanical model was proposed by Stanway et al.
[54]. In this model, a Coulomb friction element is placed in parallel with a linear viscous damper.
The force-displacement behavior appears to be reasonably modeled; however, this model does not
exhibit the observed nonlinear force-velocity response, especially when the displacement and
velocity have the same sign and the magnitude of the velocity is small [14]. A more accurate
dynamic model of MR dampers is necessary for analysis and synthesis of structures employing
MR dampers.

Two types of dynamic models for controllable fluid dampers have been investigated by
researchers: non-parametric models and parametric models. Ehrgott and Masri [3] and Gavin et
al. [5] presented a non-parametric approach employing orthogonal Chebychev polynomials to
predict the damper output force using the damper displacement and velocity information. Chang
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and Roschke [55] developed a neural network model to emulate the dynamic behavior of MR
dampers. However, the non-parametric damper models are quite complicated. Gamato and Filisko
[56] proposed a parametric viscoelastic-plastic model based on the Bingham model. Wereley et al.
[7] developed a nonlinear hysteretic biviscous model, which is an extension of the nonlinear
biviscous model having an improved representation of the pre-yield hysteresis. However, these
models can not readily capture the force roll-off in the low velocity region that is observed in the
experimental data.

Spencer et al. [14] proposed a mechanical model for MR dampers based on the Bouc-Wen
hysteresis model that overcomes a number of difficulties mentioned previously. The schematic of
the model is shown in Fig. 11. In this model, the total force is given by

(34)

where  and  is governed by

(35)

(36)

in which  = accumulator stiffness;  = viscous damping at large velocities;  = viscous
damping for force roll-off at low velocities;  = stiffness at large velocities; and  = initial dis-
placement of spring . 

To determine a model which is valid under fluctuating input current, the functional depen-

Fig. 11.  Mechanical model of MR dampers [14].
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dence of the parameters on the input current must be determined. Since the fluid yield stress is
dependent on input current,  can be assumed as a function of the input current . Moreover,
from the experiment results, , and  are also functions of the input current. 

Assume that functions of , , and  have the form of a third order polynomial. For the
20-ton full-scale MR damper, the optimal identified equations for , , and  are

(37)

(38)

(39)

and the rest of identified parameters are given in Table 2. Moreover, a first-order filter is also used

to accommodate the dynamics involved in the MR fluid reaching rheological equilibrium

(40)

Fig. 12 provides a comparison between the predicted and experimentally-obtained
responses under a 1 Hz, 0.5 inch sinusoidal displacement excitation using the proposed mechani-
cal model for the MR damper. The proposed model predicts the damper behavior very well in all
regions, including in the region where the velocities are small. Figs. 13 and 14 provide the com-
parison between the measured and predicted force under random displacement excitation. Fig. 13
shows the result with a constant input current of 1 A, and result with random input current is pro-
vided in Fig. 14. As can be seen, the experimental and model responses match very well.

Table 2: Identified parameters for the full-scale 20-ton MR damper.

Parameter Value Parameter Value

A 2679 n 10

647.46 0.18 m

137810 N/m 617.31 N/m

α i
c0 c1

α c0 c1
α c0 c1

α i( ) 16566i
3

87071i
2

– 168326i 15114+ +=

c0 i( ) 437097i
3

1545407i
2

– 1641376i 457741+ +=

c1 i( ) 9363108i
3

– 5334183i
2

48788640i 2791630–+ +=

m
1–

γ β, m
1– x0

k0 k1

H s( ) 31.4
s 31.4+
-------------------=
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7. Dynamic performance considerations of MR dampers

7.1. Dynamic performance of the MR damper electromagnet
The magnetic field, and thus the force produced by an

MR damper, is directly related to the current in the damper’s
electromagnetic coil. Neglecting eddy currents in the steel,
the basic behavior of this electromagnetic circuit can be
modeled by using an electrical network in which a resistor
and an inductor are connected in series, as shown in Fig. 15.

The equation governing the current  in the coil is

Fig. 12.  Comparison between the predicted and experimentally-obtained response 
under 1.0 Hz, 0.5 inch sinusoidal displacement excitation with constant input 
current of 2 A input using the proposed mechanical model of the MR damper: 

(a) Force vs. time; (b) force vs. displacement; and (c) force vs. velocity.
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Fig. 13.  (a) Measured random displacement excitation; (b) Force comparison between 
experimental data and model results under a constant input current of 1 A.
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Fig. 14.  (a) Measured random displacement excitation; (b) measured random
input current; (c) force comparison between experimental data and model

results with random input current.
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(41)

where L and R = coil inductance and resistance, respectively; and V = input voltage. Assuming a
constant voltage , the solution for (41) is

(42)

Eq. (42) indicates that nearly  seconds are required for the current to reach 95% of the final
value . This exponential response is insufficient for many practical applications.

7.2. Current Driver
Several approaches can be considered to decrease the response time of the MR damper’s

magnetic circuit. The first is to use a current driver instead of a voltage-driven power supply. To
see the effect of the current driver, the feedback loop given by

(43)

is combined with Eq. (41) to yield the governing equation for current as

(44)

where  = desired current; and  = proportional gain. By adjusting the gain  such that the sys-
tem is under damped ( ), faster response times can be achieved. Assuming
that the voltage does not saturate, the first point in at which the achieved current reaches the de-
sired current  is

(45)

where .

7.3. Amplifier Saturation Voltage and Coil Configuration
The MR damper shown in Fig. 2 has a multi-stage electromagnetic coil. These coils may be

connected in series or parallel. For this discussion, assume that the total inductance and resistance
of the coils connected in series are  and , respectively. Assuming that the damper has 
identical coils, then the effective inductance and resistance of the coils connected in parallel are
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, (46)

For both series and parallel configurations, the ratio , and the power requirements
to produce a given current  in the coils is . However, the time  to reach the current  is
not the same.

When using a current driver with a relatively large gain , a step input command causes the
current driver to output the maximum amplifier voltage . For this case, the time to reach the
current  is

(47)

where . Expanding in terms of , Eq. (47) can be approximated as 

(48)

Experience indicates that  should be several times larger than ; consequently, retaining
only the first term in the series provides a reasonably good estimate for . The time to reach a de-
sired current  is approximately inversely proportional to the number  of coils in the magnetic
circuit and the maximum voltage  of the amplifier. Therefore, reduced damper response
times can be achieved by using the parallel coil configuration and increasing the maximum volt-
age achievable by the current driver.

7.4. Force-feedback control
The resisting force of an MR damper depends on the input current to the electromagnet, the

characteristics of MR fluids, the motion of the damper, and the damper’s geometry. Moreover, the
damper resisting force is not proportional to the input current, as is shown in Fig. 8b. Therefore,
commanding the MR damper to output an arbitrary force is not straightforward. To overcome this
difficulty, a force-feedback control scheme is employed, as shown in Fig. 16. In this approach,
there are two control blocks, a force upside control block and a force downside control block.
These are triggered by the decision block. In the upside control block, a traditional PID controller
with a large proportional gain is used such that when the force error is large, the current driver
uses its full capacity or voltage to increase the current in the coil; consequently, the damper resist-
ing force is also increases. In the downside control block, a current back-driven technique is used
when the force error is large; this technique work by applying a negative current, as opposed to
simply reducing the input current or setting the current back to zero. The results presented in the
next section employ the force-feedback control strategy.
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7.5. Experimental verification
Fig. 17 compares the current in the 20-ton MR damper coil (connected in series) that result

from a step input command generated by both constant voltage and current-driven power sup-
plies. In the constant voltage case, a voltage-driven power supply is attached to the damper coils.
The time constant  for the coils of the 20-ton MR damper arranged in series is 0.3 sec.
Therefore, as shown in Fig. 17, it takes about 1 sec for the current to achieve 95% of the final
value which indicates that the damper has only a 1 Hz bandwidth. Alternatively, using a current
driver, the 5% range is achieved within 0.06 sec. The current driver includes a DC power supply
(±120 V) and a PWM servo amplifier manufactured by the Advanced Motion Controls operating
under current mode. Because the current driver clearly offers a substantial reductions in the

+ _

Fig. 16.  Block diagram of force-feedback control strategy.
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response time, the subsequent results reported herein will employ this current driver.
Figs. 18 and 19 illustrate the performance difference between the series-coil and parallel-

coil connections of the MR damper force response to a step input current when the damper moves
at a constant velocity of 1 cm/sec. For the series connection, nearly 0.39 seconds is required for
force to rise from 7.85 kN to 157.9 kN, and 0.16 seconds are required for the force to drop from
158.5 kN to 70 kN. However, the parallel connection requires only 0.2 seconds for force to rise
from 7.85 kN to 157.9 kN; and 0.115 seconds to drop from 158.5 kN to 70 kN. Note that 7.85 kN
is the off-state force corresponding to zero input current.

From Fig. 18, note that more than a full second is required to drop the force from 158.5 kN
to off-state force 7.85 kN for both connections–much longer than the upside. The reason for this
phenomenon is due to the residual magnetic field remaining inside the damper after the current
has been removed. To overcome this problem, the coils are back-driven at the maximum allow-

Fig. 18.  MR damper response time using series and parallel 
connections with current driver.

-0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Time (sec)

F
or

ce
 (

kN
)

Series Connection  
Parallel Connection

-0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Time (sec)

F
or

ce
 (

kN
)

Series Connection  
Parallel Connection
Series Connection  
Parallel Connection
Series Connection  
Parallel Connection



25

able value of -6 A (when connected in parallel; i.e., -2 A in each oil) until the damper force
reaches its off-state value. As illustrated in Fig. 19, the use of the back-driven current approach
requires only 0.099 seconds to command the damper force from 158.5 kN to the off-state force of
7.85 kN in parallel connection. The back-driven current approach can effectively reduce the influ-
ence of the residual magnetic field, allowing a fast response time to be achieved on the downside
of the damper force.

Conclusions

Magnetorheological (MR) fluid dampers provide a level of technology that has enabled
effective semi-active control in a number of real world applications. Because of their simplicity,
low input power, scalability and inherent robustness, such MR fluid dampers appear to be quite
promising for civil engineering applications. A 20-ton MR damper capable of providing semi-
active damping for full-scale structural applications has been designed and constructed. 

For design purposes, two quasi-static models, an axisymmetric and a parallel-plate model,
are derived for the force-velocity relationship of the MR damper, and both models present results
which closely match the experimental data. Experimental results have also shown that MR damp-
ers can provide large controllable damping forces, while requiring only a small amount of energy.
Moreover, a mechanical model is employed to model the dynamic behavior of the MR damper.

Dynamic response time is another important characteristic affecting in the performance of
MR dampers in practical civil engineering applications. A current driver has been shown to be
effective in reducing the response time of the MR damper. Experimental results show that a paral-
lel connection of the damper coils results in faster response time than a series connection. For the
parallel connection, only 0.2 seconds are needed to achieve 157.9 kN in the upside of the damper
force; and 0.099 seconds are needed to reduce the damper force from 158.5 kN to 7.85 kN (off

Fig. 19.  Damper response time using current back-driven approach.
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state) on the downside using current back-driven approach. The experimental results indicate that
the response time of the damper is adequate for a wide range of civil engineering structural appli-
cations.
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